# ABBREVIATIONS

| •       | ROUND                              | LVK   | LOUVER                       | •••••• |
|---------|------------------------------------|-------|------------------------------|--------|
| ABV     | ABOVE                              | LWT   | LEAVING WATER TEMPERATURE    | 16,19  |
| AC      | AIR CONDITIONING                   | M/A   | MIXED AIR                    |        |
| ADD     | ADDENDUM                           | MAX   | MAXIMUM                      | 16/8   |
| AFF     | ABOVE FINISHED FLOOR               | MBH   | ONE THOUSAND BTU PER HOUR    | 10/0   |
| AFUE    | ANNUAL FUEL UTILIZATION EFFICIENCY | MD    | MOTORIZED DAMPER             |        |
| 4LT     | ALTERNATE                          | MECH  | MECHANICAL                   | 16-0   |
| ٩P      | ACCESS PANEL                       | MFR   | MANUFACTURER                 |        |
| ARCH    | ARCHITECT/ARCHITECTURAL            | MIN   | MINIMUM                      |        |
| 3FF     | BELOW FINISHED FLOOR               | MISC  | MISCELLANEOUS                |        |
| BLW     | BELOW                              | MTR   | MOTOR                        |        |
| BTU     | BRITISH THERMAL UNITS              | MU/A  | MAKE-UP/AIR                  |        |
| зтин    | BRITISH THERMAL UNITS PER HOUR     | NC    | NOISE CRITERIA               |        |
| CAP     | CAPACITY                           | NC    | NORMALLY CLOSED              | F/A    |
| CFM     | CUBIC FEET PER MINUTE              | NIC   | NOT IN CONTRACT              |        |
| CLG     | CEILING                            | NO    | NORMALLY OPEN                |        |
| )       | DEGREE                             | NTS   | NOT TO SCALE                 |        |
| ЭВ      | DRY BULB                           | O/A   | OUTSIDE AIR                  |        |
| DIA     | DIAMETER                           | PD    | PRESSURE DROP                |        |
| DN      | DOWN                               | PLBG  | PLUMBING                     |        |
| A       | EACH                               | PRESS | PRESSURE                     |        |
| AT      | ENTERING AIR TEMPERATURE           | PSI   | POUNDS PER SOUARE INCH       |        |
| LEC     | ELECTRICAL                         | PSIG  | POUNDS PER SQUARE INCH GAUGE |        |
| OUIP    | EQUIPMENT                          | PWR   | POWER                        |        |
| WT      | ENTERING WATER TEMPERATURE         | R/A   | RETURN AIR                   |        |
| /A      | EXHAUST AIR                        | RH    | RELATIVE HUMIDITY            |        |
| XIST    | EXISTING                           | RL/A  | RELIEF AIR                   |        |
| :       | DEGREES FAHRENHEIT                 | RM    | REMAIN                       |        |
| D       | FIRE DAMPER                        | RPM   | REVOLUTIONS PER MINUTE       |        |
| =L      | FLOOR                              | SF    | SOUARE FOOT                  | M.C.   |
| -<br>PM | FEET PER MINUTE                    | S/A   | SUPPLY AIR                   |        |
| т.      | FOOT/FEET                          | SF    | SOUARE FOOT                  | FC     |
| GC      | GENERAL CONTRACTOR                 | SD    | SMOKE DAMPER                 | L.C.   |
| GPM     | GALLONS PER MINUTE                 | SP    | STATIC PRESSURE              | P.C.   |
| -IP     | HORSE POWER                        | т.    | THERMOSTAT                   |        |
| HTG     | HEATING                            |       |                              | N.I.C. |
|         | HEATER                             | TEMP  | TEMPERATURE                  |        |
| HW/     | HOT WATER                          | TVP   | ΤΥΡΙζΔΙ                      | AFF    |
| N       | INCH                               | VAV   |                              |        |
| B       | POUND                              | VENT  | VENTILATION                  | DN     |
| ΔΤ      |                                    | WR    | WFT BUI B                    |        |
| D       |                                    | **0   |                              | UP     |
|         | LOW TRESSORE                       |       |                              |        |

| AC   | AIR CONDITIONING UNIT           | EWH | ELECTRIC WATER HEATER     |
|------|---------------------------------|-----|---------------------------|
| ACC  | AIR COOLED CONDENSER            | FCU | FAN COIL UNIT             |
| ACCU | AIR COOLING CONDENSING UNIT     | FP  | FIRE PUMP                 |
| AHU  | AIR HANDLING UNIT               | GI  | GREASE INTERCEPTOR        |
| AS   | AIR SEPARATOR                   | GRV | GRAVITY ROOF VENTILATO    |
| В    | BOILER                          | HWP | HEATING WATER PUMP        |
| СН   | CHILLER                         | HX  | HEAT EXCHANGER            |
| СТ   | COOLING TOWER                   | HRU | HEAT RECOVERY UNIT        |
| син  | CABINET UNIT HEATER             | PRV | POWER ROOF VENTILATOR     |
| CWP  | CONDENSER WATER PUMP            | RE  | <b>RETURN/EXHAUST FAN</b> |
| CHWP | CHILLED WATER PUMP              | RTU | ROOFTOP UNIT              |
| DBP  | DOMESTIC WATER BOOSTER PUMP     | SEP | SEWAGE EJECTOR PUMP       |
| DC   | DUCT MOUNTED COIL               | SF  | SUPPLY FAN                |
| DCP  | DOMESTIC WATER CIRCULATING PUMP | SP  | SUMP PUMP                 |
| EF   | EXHAUST FAN                     | UH  | UNIT HEATER               |
| EDC  | ELECTRIC DUCT COIL              | WH  | WATER HEATER              |
| ст   | ΕΧΡΑΝSION ΤΑΝΚ                  |     |                           |

| N |
|---|
|   |

| SYMBOL       |                 |
|--------------|-----------------|
|              | BUTTERFLY VALV  |
| ×            | 3-PIECE BALL VA |
|              | CHECK VALVE     |
|              | STRAINER WITH   |
| ₩            | BALANCING VAL   |
| X            | B&G CIRCUIT SET |
|              | UNION           |
| Q            | THERMOMETER     |
| P            | PRESSURE GAGE   |
| <del>\</del> | GAGE COCK       |
| B            | FLOW SWITCH     |
| ₽            | ECCENTRIC REDU  |
| <b>&gt;</b>  | CONCENTRIC REI  |
| <u> </u>     | STEAM TRAP, F&  |
|              | STEAM TRAP, TB  |
| &            | CONTROL VALVE   |
| X            | GAS COCK        |
| &            | PRESSURE REDUC  |
| §            | SOLENOID VALVI  |
|              |                 |

## MECHANICAL PIPING SYSTEMS LEGEND DESCRIPTION

| SYMBOL |                         |
|--------|-------------------------|
| D      | CONDENSATE DRAINAGE     |
| G      | NATURAL GAS             |
| — gr — | GEOTHERMAL WATER RETURN |
| GS     | GEOTHERMAL WATER SUPPLY |
| R      | REFRIGERANT             |

- USED PRIOR TO THE START OF WORK.
- B. AIR OUTLETS AND INLETS: 0 TO MINUS 10 PERCENT.
- REQUIREMENTS.

# 

| MECHANICAL DUCT SYMBOLS                    |
|--------------------------------------------|
| DESCRIPTION                                |
| SQUARE DUCT SIZE TAG (WIDTH x HEIGHT)      |
| OVAL DUCT SIZE TAG (WIDTH / HEIGHT)        |
| <br>ROUND DUCT SIZE TAG (DIAMETER)         |
| SUPPLY AIR                                 |
| OUTDOOR AIR                                |
| RETURN AIR                                 |
| EXHAUST AIR                                |
| RELIEF AIR                                 |
| SUPPLY AIR DIFFUSER (4-WAY)                |
| RETURN AIR GRILLE                          |
| RETURN AIR GRILLE WITH SOUND BOOT          |
| EXHAUST AIR GRILLE                         |
| <br>POINT OF EXISTING TO NEW CONNECTION    |
| POINT OF DISCONNECT TO EXISTING CONNECTION |
| MECHANICAL CONTRACTOR                      |
| ELECTRICAL CONTRACTOR                      |
| PLUMBING CONTRACTOR                        |
| NOT IN CONTRACT                            |
| ABOVE FINISHED FLOOR                       |

SECTION CUT REFERRING DETAIL NUMBER 

DOWN

SYMBOL

Ð

-吕∾

⊣⊟м

# MECHANICAL ACCESSORIES SYMBOL LEGEND

DESCRIPTION RECTANGULAR DUCT FIRE DAMPER W/ ACCESS DOOR (SEE DETAIL)

RECTANGULAR DUCT MOUNTED DUCT DETECTOR. FURNISHED AND CONNECTED BY ELECTRICAL CONTRACTOR, INSTALLED BY MECHANICAL CONTRACTOR. CUTTING OF DUCT, INSTALLATION OF DETECTOR. AND DETERMINATION OF SAMPLING TUBE LENGTH SHALL BE THE MECHANICAL CONTRACTOR. PROVIDE REMOTE INDICATING LIGHT WITH EACH DETECTOR.

RECTANGULAR DUCT MOUNTED MOTOR OPERATED DAMPER, INTERLOCK WITH FAN AS INDICATED. (DAMPER BY M.C.)

ROUND DUCT MOTORIZED DAMPER

# MECHANICAL PIPING SYMBOLS

| E                              |
|--------------------------------|
| LVE                            |
|                                |
| BLOWDOWN VALVE WITH HOSE CONN. |
| VE                             |
| TER                            |
|                                |

DESCRIPTION

E & COCK

DUCER

ING/REGULATING VALVE

# TESTING, ADJUSTING, AND BALANCING

THE MECHANICAL CONTRACTOR SHALL BALANCE ALL MECHANICAL SYSTEMS TO THE PERFORMANCE SPECIFICATIONS INDICATED ON PLANS AND PROVIDE THE ENGINEER WITH THREE COPIES OF A COMPLETE TEST AND BALANCE REPORT. THE REPORT IS TO BE ISSUED A MINIMUM OF TWO WEEKS PRIOR TO PROJECT COMPLETION. THE TEST AND BALANCE REPORT WILL BE SUBJECT TO REVIEW AND APPROVAL BY THE ENGINEER. ANY ADDITIONAL TESTING, ADJUSTING AND BALANCING REQUIRED (AT ENGINEER'S REQUEST) AFTER REVIEW OF THE INITIAL REPORT SHALL BE PROVIDED AT NO ADDITIONAL COST. TEST AND BALANCE REPORT TO BE COMPLETED BY AN INDEPENDENT, CERTIFIED TEST AND BALANCE CONTRACTOR.

CONDUCT TESTING AND BALANCING IN ACCORDANCE WITH TECHNICAL PORTIONS OF THE AABC "NATIONAL STANDARDS FOR TESTING AND BALANCING HVAC SYSTEMS", LATEST EDITION.

INSTRUMENTS USED FOR BALANCING MUST HAVE BEEN CALIBRATED WITHIN A PERIOD OF SIX (6) MONTHS PRIOR TO BALANCING. SUBMIT SERIAL NUMBERS, AND DATES OF CALIBRATION OF ALL INSTRUMENTS TO BE

4. SET HVAC SYSTEM AIRFLOW AND WATER FLOW RATES WITHIN THE FOLLOWING TOLERANCES:

A. SUPPLY, RETURN, AND EXHAUST FANS AND EQUIPMENT WITH FANS: MINUS 5 TO PLUS 10 PERCENT.

C. GEOTHERMAL CONDENSER WATER FLOW RATE: 0 TO MINUS 10 PERCENT.

REFER TO SPECIFICATION SECTION 230593 AND CONTRACT DRAWINGS IN THEIR ENTIRETY FOR ADDITIONAL

## MECHANICAL GENERAL NOTES

SEE SPECIFICATIONS FOR ADDITIONAL PROJECT REQUIREMENTS. THESE GENERAL NOTES ARE INTENDED TO SUPPLEMENT THE SPECIFICATIONS. IN THE EVENT THAT THE VERBIAGE IS IN CONFLICT OR CONTRADICTS THE REQUIREMENTS LISTED HERE, THE QUESTION SHALL BE ASKED PRIOR TO BIDDING OR THE MORE STRINGENT SHALL APPLY AT THE ENGINEER'S DISCRETION. DO NOT SCALE DRAWINGS. SEE ARCHITECTURAL DRAWINGS AND REFLECTED CEILING PLANS FOR EXACT

- LOCATION OF DOORS, WINDOWS, CEILING DIFFUSERS, ETC.
- ALL EQUIPMENT LISTED IN PROJECT SCHEDULES IS TO BE CONSIDERED DESIGN BASIS EQUIPMENT. ALL COST ASSOCIATED WITH SUBSTITUTED/NON-DESIGN BASIS EQUIPMENT TO COMPLY WITH BASIS OF DESIGN, INCLUDING PROVIDING MAINTENANCE ACCESS, CLEARANCE, PIPING, SHEET METAL, ELECTRICAL, REPLACEMENT OF OTHER SYSTEM COMPONENTS, BUILDING ALTERATIONS, ETC., SHALL BE INCLUDED IN THE ORIGINAL BASE BID. NO ADDITIONAL COST ASSOCIATED WITH SUBSTITUTED/NON-DESIGN BASIS EQUIPMENT WILL BE APPROVED DURING CONSTRUCTION AND ALL COST WILL BE THE RESPONSIBILITY OF THE MECHANICAL CONTRACTOR. THIS INCLUDES ANY MODIFICATIONS TO ANY ASSOCIATED MECHANICAL, PLUMBING, OR ELECTRICAL SYSTEMS REQUIRED BY THIS SPECIFIC MANUFACTURER'S INSTALLATION INSTRUCTIONS.
- ALL DUCTWORK SHALL BE GALVANIZED SHEET METAL CONSTRUCTED IN ACCORDANCE WITH THE LATEST SMACNA STANDARDS. ALL SUPPLY, RETURN AND OUTSIDE AIR DUCTWORK SHALL BE WRAPPED WITH 2" THICK DUCT WRAP WITH VAPOR BARRIER. INSULATION (INCLUDING FLEXIBLE DUCT INSULATION) SHALL HAVE A MINIMUM INSTALLED R-VALUE OF 6.0. TRANSFER DUCTS SHALL BE LINED WITH 1" THICK FIBERGLASS DUCT LINER FOR ACOUSTICAL PURPOSES. DUCT DIMENSIONS ON PLANS ARE FREE AREA SIZE.
- SUPPLY AND RETURN DUCTWORK LOCATED OUTSIDE THE BUILDING SHALL BE WRAPPED WITH 3" THICK DUCT WRAP WITH VAPOR BARRIER HAVING A MINIMUM INSTALLED R VALUE OF 8.0. COVER EXTERNAL INSULATION WITH AN ALUMINUM OUTER ENCLOSURE AND SEAL WATER TIGHT.
- ALL DUCTWORK SHALL BE SEALED PER THE REQUIREMENTS OF THE NORTH CAROLINA INTERNATIONAL MECHANICAL CODE. SEAL MEDIUM PRESSURE SUPPLY DUCTWORK FOR POSITIVE 3" PRESSURE CLASS, SMACNA SEAL CLASS A, SMACNA LEAKAGE CLASS 4. SEAL LOW PRESSURE SUPPLY, RETURN, OUTSIDE AIR, AND EXHAUST DUCTWORK FOR POSITIVE/NEGATIVE 2" PRESSURE CLASS, SMACNA SEAL CLASS A, SMACNA LEAKAGE CLASS 4.
- ALL PIPING, DUCTS, VENTS, ETC., EXTENDING THROUGH WALLS AND ROOF SHALL BE FLASHED AND COUNTERFLASHED IN A WATERPROOF MANNER.
- ALL PIPING AND DUCTWORK LOCATIONS SHALL BE COORDINATED WITH THE WORK UNDER OTHER DIVISIONS OF THE SPECIFICATIONS, TO AVOID INTERFERENCE.
- UPON PROJECT COMPLETION, THE MECHANICAL CONTRACTOR IS RESPONSIBLE FOR PROVIDING THE OWNER INSTALLATION INFORMATION INCLUDING RECORD SUBMITTALS (WITH ANY SUBMITTAL REVIEW COMMENTS ADDRESSED) AND O&M MANUALS FOR EACH PIECE OF EQUIPMENT INCLUDING ALL SELECTED OPTIONS, THE NAME AND ADDRESS OF AT LEAST ONE SERVICE AGENCY, FULL CONTROL SYSTEM O&M AND CALIBRATION INFORMATION INCLUDING WIRING DIAGRAMS, SCHEMATICS, FULL SEQUENCE OF OPERATION, AND PROGRAMMED SETPOINTS. IN ADDITION, THE MECHANICAL CONTRACTOR SHALL BE RESPONSIBLE TO HIRE A REGISTERED DESIGN PROFESSIONAL TO COMMISSION THE INSTALLED SYSTEM AND PROVIDE THE OWNER AND CODE REVIEWER A SEALED STATEMENT OF SYSTEM COMMISSIONING (PER 2018 NCECC APPENDIX C1).
- PROVIDE A ONE YEAR WARRANTY FOR ALL WORK PERFORMED BEGINNING ON THE DAY THE SYSTEM IS COMPLETELY OPERATIONAL AND ACCEPTABLE BY THE OWNER.
- ). PROVIDE MANUFACTURER'S RECOMMENDED CLEARANCES AROUND ALL EQUIPMENT FOR MAINTENANCE AND FILTER REMOVAL.
- CONDENSATE DRAIN PIPING SHALL BE SCHEDULE 40 PVC PIPE AND FITTINGS. DRAINS FROM AIR HANDLING UNITS SHALL BE TRAPPED. CONDENSATE DRAINS SHALL BE INSULATED WITH 1/2" THICK ARMAFLEX INSULATION. MINIMUM DRAIN SIZE SHALL BE 3/4".
- 2. ALL REFRIGERANT PIPE SHALL BE NITROGENIZED ACR COPPER TUBE. SIZE, INSULATE, AND INSTALL REFRIGERANT PIPING PER MANUFACTURER'S RECOMMENDATIONS. REFRIGERANT PIPING INSULATION EXPOSED OUTDOORS SHALL BE COVERED WITH AN OUTER ALUMINUM JACKET.
- . ANY DEVICE REQUIRING A THERMOSTAT FOR CONTROL SHALL BE FURNISHED WITH A THERMOSTAT WHETHER INDICATED ON THE DRAWINGS OR NOT.
- . INSTALL THE TOP OF ALL THERMOSTATS, SENSORS, AND SWITCHES AT 4'-0" (MAXIMUM) ABOVE FINISH FLOOR. COORDINATE EXACT THERMOSTAT LOCATION WITH OWNER PRIOR TO INSTALLATION. ANY DEVICE ON A PERIMETER WALL SHALL BE MOUNTED ON A FOAM-FILLED ELECTRICAL BOX, WITH ALL GAPS BETWEEN BOX AND WALL SEALED TO PREVENT INFILTRATION.
- 5. CONTRACTOR SHALL VERIFY LOCATION OF ALL ROOF PENETRATIONS WITH ARCHITECT & OWNER PRIOR TO INSTALLATION. NEW ROOF PENETRATIONS MADE THROUGH EXISTING ROOF SYSTEMS SHALL BE VERIFIED WITH THE OWNER'S EXISTING ROOF WARRANTY PRIOR TO INSTALLATION.
- 16. ROOF CURBS SHALL ALLOW A MINIMUM OF 8" ABOVE ROOF INSULATION FOR FLASHING, OR AS INDICATED ON THE DRAWINGS, WHICHEVER IS GREATER. IN ADDITION, ALL ROOF CURBS OR EQUIPMENT SUPPORT RAILS THAT SUPPORT EQUIPMENT, PIPING, CONDUIT, ETC. EXPOSED ON THE ROOF SHALL HAVE SUFFICIENT HEIGHT TO MAINTAIN A MINIMUM OF 18" CLEARANCE BELOW SUPPORTED EQUIPMENT FOR ROOF MAINTENANCE.
- . CONTRACTOR SHALL LOCATE EXHAUST FANS, OUTLETS, AND GAS FLUES A MINIMUM OF 15'-0" FROM ANY OUTSIDE AIR INTAKE.

## **COORDINATION DRAWINGS**

THE MECHANICAL CONTRACTOR SHALL ORGANIZE COORDINATION MEETINGS TO DEVELOP A SET OF DRAWINGS WITH ALL CONTRACTORS (ELECTRICAL, MECHANICAL, PLUMBING, FIRE PROTECTION, IT/DATA, AND GENERAL CONTRACTOR). THE MECHANICAL CONTRACTOR WILL HAVE THE LEAD RESPONSIBILITY FOR THE COORDINATION DRAWINGS. THE MECHANICAL CONTRACTOR SHALL PRODUCE THE ORIGINAL DRAWINGS AND FORWARD THE DRAWINGS TO EACH OF THE OTHER CONTRACTORS FOR THEM TO ADD THEIR SYSTEMS TO THIS SET OF COORDINATION DRAWINGS. THE CONTRACTORS WILL DEVELOP THE DRAWINGS IN THIS ORDER: MECHANICAL, FIRE PROTECTION, PLUMBING, ELECTRICAL, IT/DATA (INCLUDING CABLE TRAY) AND GENERAL. THIS SHALL ALSO BE THE ORDER OF PRECEDENCE FOR INSTALLATION OF SYSTEMS. ANY RELOCATION OF SYSTEM ROUTINGS WILL BE FOUND IN THE COORDINATION PHASE AND NOTICED BY EACH OF THE CONTRACTORS. THESE DRAWINGS, WHEN COMPLETED, SHALL BE SIGNED OFF BY ALL OF THE ABOVE LISTED PARTIES. DRAWINGS SHALL BE COMPLETED PRIOR TO FABRICATION AND INSTALLATION OF DUCTWORK AND PIPING SYSTEMS, OR PURCHASE OF EQUIPMENT. THE FOLLOWING ITEMS REPRESENT THE MINIMUM REQUIREMENTS FOR SHOP DRAWINGS AND COORDINATION DRAWINGS:

- 1, ALL SHOP AND COORDINAGION DRAWINGS WILL BE 1/4" = 1'-O" SCALE 2. DRAWINGS WILL BE ORIGINAL DRAWINGS AND NOT OVERLAYS OF THE CONTRACT/DESIGN
- 3. COORDINATION DRAWINGS WILL BE DRAWN ON REPRODUCIBLE MATERIAL 48'x36". 4. COORDINATION DRAWINGS ARE NOT SHOP DRAWINGS AND ARE REQUIRED IN ADDITION TO SHOP DRAWINGS.
- 5. ONCE THE COMPLETE COORDINATION DRAWINGS HAVE BEEN COMPILED, THE MECHANICAL CONTRACTOR WILL DISTRIBUTE ONE SIGNED SET TO EACH OF THE FOLLOWING CONTRACTORS: ELECTRICAL, PLUMBING, FIRE PROTECTION, AND GENERAL. ADDITIONAL SETS WILL BE SENT TO THE OWNER, ARCHITECT, AND ENGINEER.

THIS DRAWING IS AN INSTRUMENT OF SERVICE. THE DRAWING AND THE INFORMATION THEREON IS THE PROPERTY OF OPTIMA ENGINEERING, P.A. IS EXPRESSLY FORBIDDEN. COPYRIGHT © OPTIMA ENGINEERING, P.A. 2023, ALL RIGHTS RESERVED.

- 18. DRYER VENT WALL CAPS SHALL BE PROVIDED WITH A BACKDRAFT DAMPER. DRYER VENT SHALL NOT EXCEED A TOTAL EQUIVALENT LENGTH OF 35'-0" WITH A 2.5' DEDUCTION FOR EACH 45° BEND AND A 5' DEDUCTION FOR EACH 90° BEND.
- 19. KITCHEN HOOD EXHAUST DUCT SHALL BE 16 GAUGE CARBON STEEL. ALL JOINTS AND SEAMS SHALL BE CONSTRUCTED WITH A CONTINUOUS LIQUID - TIGHT EXTERNAL WELD. ALL DUCTWORK SHALL SLOPE A MINIMUM OF 1/4 INCH PER FOOT TOWARD HOOD. PROVIDE CLEANOUTS AT EVERY CHANGE OF DIRECTION IN THE EXHAUST DUCT AND AT 20'-0" (MINIMUM) INTERVALS.
- 20. THE MECHANICAL CONTRACTOR SHALL PERFORM A LIGHT TEST (AS REQUIRED BY THE MECHANICAL CODE) FOR ALL JOINTS AND SEAMS IN THE PRESENCE OF THE LOCAL AUTHORITY HAVING JURISDICTION PRIOR TO CONCEALING KITCHEN HOOD EXHAUST DUCTWORK.
- 21. ALL GEOTHERMAL CONDENSER WATER PIPING SHALL BE SDR-11 HDPE PIPE. PROVIDE WITH MOLDED PE FITTINGS, HDPE RESIN SOCKET- OR BUTT-FUSION TYPE MADE TO MATCH HDPE PIPE DIMENSIONS AND CLASS.
- 2. ALL CONDENSER WATER PIPING SHALL PITCH DOWN IN DIRECTION OF FLOW WITH MANUAL AIR VENTS AT ALL HIGH POINTS AND 1/2" DRAIN VALVES AT ALL LOW POINTS.
- 3. PROVIDE UNIONS, FLANGES OR COUPLINGS AT CONNECTION TO ALL VALVES AND EQUIPMENT. DO NOT USE DIRECT WELDED OR THREADED CONNECTIONS TO VALVES, EQUIPMENT OR OTHER APPARATUS.
- 24. PROVIDE NON-CONDUCTING DIELECTRIC UNIONS WHENEVER CONNECTING DISSIMILAR METALS. 25. ALL ISOLATION VALVES, TERMINAL UNITS, CONTROLS, ETC. REQUIRING ACCESS AND SERVICE SHALL BE
- INSTALLED WITHIN 18" OF THE CEILING FOR SERVICE ACCESSIBILITY. LOCATIONS SHALL BE INDICATED ON THE CEILING GRID PER THE SPECIFICATIONS.
- 6. ALL EQUIPMENT CONCRETE PAD SIZES FOR MECHANICAL EQUIPMENT SHALL BE CONFIRMED WITH APPROVED SHOP DRAWING SUBMITTALS AND ASSOCIATED UNIT MANUFACTURER ANCHOR LOCATIONS PRIOR TO FABRICATION/INSTALLATION. THE MECHANICAL AND PLUMBING CONTRACTORS SHALL COORDINATE THE EXACT LOCATION OF MECHANICAL EQUIPMENT HOUSEKEEPING PADS WITH THE FLOOR DRAIN LOCATIONS PRIOR TO INSTALLATION OF DRAINS AT EQUIPMENT/PAD LOCATIONS.
- 7. DUCTWORK AND PIPING PASSING THROUGH/ABOVE ELECTRICAL ROOMS SHALL BE CLOSELY COORDINATED WITH THE ELECTRICAL CONTRACTOR. DUCTWORK OR PIPING SHALL NOT BE LOCATED ABOVE ELECTRICAL PANELS.
- 28. EQUIPMENT OPERATED DURING CONSTRUCTION SHALL USE FILTERED MEDIA TO PREVENT CONSTRUCTION DEBRIS FROM ENTERING COILS, DUCTWORK SYSTEMS, AIR TERMINALS ETC. AT COMPLETION OF CONSTRUCTION, MECHANICAL CONTRACTOR SHALL CLEAN ALL SYSTEMS WITH ALL CONTROL DEVICES WIDE OPEN AND REMOVE ANY REMAINING DEBRIS PRIOR TO TEST AND BALANCING. MECHANICAL CONTRACTOR SHALL REPLACE ALL FILTRATION WITH NEW FILTERS AT COMPLETION OF CONSTRUCTION. ANY DUCTWORK, AIR TERMINALS, AND/OR OTHER EQUIPMENT UPSTREAM OF FILTRATION SHALL BE CLEANED THOROUGHLY OF CONSTRUCTION DEBRIS BEFORE HANDING OVER TO OWNER.
- 9. COMMERCIAL DRYER EXHAUST DUCTWORK SHALL BE CONSTRUCTED OF GALVANIZED SHEET METAL NOT LESS THAN 0.0195 INCHES THICK. EXHAUST DUCT SHALL BE ASSEMBLED WITH SMOOTH INTERIOR SURFACE SO THAT THE JOINTS DO NOT PERMIT THE ACCUMULATION OF LINT, DO NOT USE SHEET METAL SCREWS AT JOINTS. ALL 90° TURN SHALL HAVE LONG RADIUS ELBOWS. ALL DUCTWORK SHALL BE INSTALLED PER THE DRYER MANUFACTURER'S RECOMMENDATIONS. COMMERCIAL DRYER EXHAUST DUCTWORK SHALL BE WRAPPED WITH TWO LAYERS OF 1 1/2" THICK THERMAL INSULATION BLANKET AS MANUFACTURED BY FIREMASTER (OR EQUAL). INSULATION SHALL BE INSTALLED PER NFPA-96 AND IN ACCORDANCE WITH MANUFACTURERS' RECOMMENDATIONS TO OBTAIN A 2-HOUR RATED ASSEMBLY. ASSEMBLY SHALL BE U.L. APPROVED.
- 0. PROVIDE COMBINATION FIRE/SMOKE DAMPERS WITH AN IONIZATION TYPE DUCT MOUNTED SMOKE DETECTOR IN DUCTED APPLICATIONS, OR SPOT DETECTORS IN OPENING APPLICATIONS (WITHIN 5'-0" OF THE DAMPER WITH NO AIR OUTLETS OR INLETS BETWEEN DETECTOR AND DAMPER), INSTALLED IN THE DUCT WIRED, TO CLOSE THE DAMPER UPON ACTIVATION. DUCT MOUNTED SMOKE DETECTORS AND SPOT DETECTORS SHALL BE SUPPLIED, WIRED FOR INTERFACE WITH FIRE ALARM SYSTEM AND UNIT SHUTDOWN BY THE ELECTRICAL CONTRACTOR. DETECTORS SHALL BE INSTALLED IN THE DUCT BY THE MECHANICAL CONTRACTOR.
- 1. THE MECHANICAL CONTRACTOR SHALL BE RESPONSIBLE FOR PROVIDING RESTRAINTS TO RESIST THE EARTHQUAKE EFFECTS ON THE MECHANICAL SYSTEMS. THE REQUIREMENTS FOR THOSE RESTRAINTS ARE FOUND IN THE LOCAL BUILDING CODE AND ASCE 7. THE ANCHORAGE OF THE MECHANICAL SYSTEMS SHALL COMPLY WITH THE REQUIREMENTS OF THE LOCAL BUILDING CODE AND ASCE 7.
- 2. ALL MECHANICAL EQUIPMENT SHALL BE U.L. LISTED AND LABELED AS A COMPLETE PACKAGE, NOT THROUGH INDIVIDUAL COMPONENTS OR PARTS. PROVIDE REQUIRED 3RD PARTY FIELD UL LISTING SERVICES AS REQUIRED TO COMPLY.
- 3. FUME HOOD EXHAUST DUCT SHALL BE CONSTRUCTED OF STAINLESS STEEL, WITH WELDED JOINTS AND SEAMS. PREP ROOM AND CHEMICAL STORAGE EXHAUST DUCTWORK SHALL BE CONSTRUCTED OF APPROVED G90 GALVANIZED SHEET STEEL WITH NOMINAL THICKNESS OF 18 GAUGE. DUCTWORK AND EXHAUST SYSTEM SHALL MEET THE REQUIREMENTS OF NCMC SECTION 510.

# **MECHANICAL SHEET INDEX**

| SHEET NUMBER | SHEET NAME                                       |
|--------------|--------------------------------------------------|
| M-001        | MECHANICAL LEGEND AND NOTES                      |
| M-002        | MECHANICAL SCHEDULES                             |
| M-003        | MECHANICAL SCHEDULES                             |
| M-004        | MECHANICAL VENTILATION CALCULATIONS              |
| M-101        | OVERALL FIRST FLOOR MECHANICAL PLAN              |
| M-102        | OVERALL SECOND FLOOR MECHANICAL PLAN             |
| M-103        | OVERALL ROOF MECHANICAL PLAN                     |
| M-111A       | FIRST FLOOR MECHANICAL PLAN - AREA A             |
| M-111B       | FIRST FLOOR MECHANICAL PLAN - AREA B             |
| M-111C       | FIRST FLOOR MECHANICAL PLAN - AREA C             |
| M-111D       | FIRST FLOOR MECHANICAL PLAN - AREA D             |
| M-111E       | FIRST FLOOR MECHANICAL PLAN - AREA E             |
| M-111F       | FIRST FLOOR MECHANICAL PLAN - AREA F             |
| M-112A       | SECOND FLOOR MECHANICAL PLAN - AREA A            |
| M-112B       | SECOND FLOOR MECHANICAL PLAN - AREA B            |
| M-112C       | SECOND FLOOR MECHANICAL PLAN - AREA C            |
| M-112D       | SECOND FLOOR MECHANICAL PLAN - AREA D            |
| M-112E       | SECOND FLOOR MECHANICAL PLAN - AREA E            |
| M-112F       | SECOND FLOOR MECHANICAL PLAN - AREA F            |
| M-113E       | SECOND FLOOR CLERESTORY MECHANICAL PLAN - AREA E |
| M-113F       | SECOND FLOOR CLERESTORY MECHANICAL PLAN - AREA F |
| M-114C       | ROOF MECHANICAL PLAN - AREA C                    |
| M-114E       | ROOF MECHANICAL PLAN - AREA E                    |
| M-114F       | ROOF MECHANICAL PLAN - AREA F                    |
| M-211A       | FIRST FLOOR MECHANICAL PIPING PLAN - AREA A      |
| M-211B       | FIRST FLOOR MECHANICAL PIPING PLAN - AREA B      |
| M-211C       | FIRST FLOOR MECHANICAL PIPING PLAN - AREA C      |
| M-211D       | FIRST FLOOR MECHANICAL PIPING PLAN - AREA D      |
| M-211E       | FIRST FLOOR MECHANICAL PIPING PLAN - AREA E      |
| M-211F       | FIRST FLOOR MECHANICAL PIPING PLAN - AREA F      |
| M-212C       | SECOND FLOOR MECHANICAL PIPING PLAN - AREA C     |
| M-212E       | SECOND FLOOR MECHANICAL PIPING PLAN - AREA E     |
| M-212F       | SECOND FLOOR MECHANICAL PIPING PLAN - AREA F     |
| M-301        | MECHANICAL GEOTHERMAL SITE PLAN                  |
| M-401        | ENLARGED MECHANICAL PLANS - MECH PENTHOUSE M2300 |
| M-402        | ENLARGED MECHANICAL PLANS - MECH LOFT M3000      |
| M-403        | ENLARGED MECHANICAL PLANS - MECH LOFT M3100      |
| M-501        | U.L. PENETRATION DETAILS                         |
| M-502        | MECHANICAL DETAILS                               |
| M-503        | MECHANICAL DETAILS                               |
| M-601        | MECHANICAL CONTROLS SEQUENCES OF OPERATION       |

MECHANICAL CONTROL POINTS LIST

| C401 METHOD C           | OF COMPLIANCE                                   |                         |                           |             |
|-------------------------|-------------------------------------------------|-------------------------|---------------------------|-------------|
| 2018 NCECC              | CHAPTER 4                                       |                         | COMCHECK PROV             | IDED (2     |
| ASHRAE 90.              | 1-2013 PRESCRIPTIVE                             |                         | COMCHECK PROV             | IDED (9     |
| ASHRAE 90.              | ENERGY MODELIN                                  | G DAT                   |                           |             |
| N/A (EXISTI             | NG LIGHTING, HVAC, A                            | ND DOM. WATER HEATIN    | NG SYSTEMS TO REM         | AIN)        |
| C406 ADDITION           | AL EFFICIENCY PACKAG                            | GE OPTIONS              |                           |             |
| C406.2 EFFIC            | CIENT MECH EQUIPME                              | NT                      | C406.5 ON-SITE RE         | NEWAB       |
| C406.3 REDI             | JCED LTG DENSITY                                |                         | C406.6 DEDICATED          | OA SYS      |
| C406.4 ENH              | ANCED LTG CONTROL                               | s                       | C406.7 SERVICE WA         | ATER HE     |
|                         |                                                 |                         | L                         |             |
| C301 CLIMATE Z          |                                                 |                         |                           |             |
|                         |                                                 | AROLINA                 |                           |             |
| EXTERIO                 | CONDITIONS<br>0R (ASHRAE 90.1-2013 <sup>-</sup> | TABLE D-1)              |                           |             |
| wi                      | nter dry bulb                                   | ,                       | 22.5° F.                  |             |
| sui<br>sui              | mmer dry bulb<br>mmer wet bulb                  |                         | 93.3° F.<br>78.1° F.      |             |
| INTERIC                 | R (2018 NCECC SECTIO                            | DN C302.1)              |                           |             |
| wi                      | nter dry bulb                                   | ,                       | 72° F.                    |             |
| sui                     | mmer dry bulb                                   |                         | 75° F.                    |             |
| C403.2 HEATING          | & COOLING LOADS A                               | ND EQUIPMENT & SYSTEI   | VI SIZING                 |             |
|                         |                                                 |                         | 2.289.200 BTUH (pe        | ak)         |
| BUILDING C              | COOLING LOAD                                    |                         | 4,288,800 BTUH (pe        | ak)         |
|                         |                                                 |                         |                           |             |
|                         |                                                 |                         | 5,583,115 BTUH            |             |
| INSTALLED               | COOLING CAPACITY                                |                         | 4,502,057 81011           |             |
| C403.2.3 & C406         | .2 - REQUIRED & INCR                            | EASED HVAC EQUIPMEN     | PERFORMANCE               |             |
| SYSTEM DESCR            | IPTION - GEOT                                   | HERMAL LOOP SERVING     | WSHP WITH HOT GAS         | S REHEA     |
|                         |                                                 |                         | C 402 2 2                 |             |
|                         |                                                 |                         | <u>- C403.2.3</u>         | _           |
|                         | D HVAC EQUIP EFFICIE                            | NCY COMPLIANCE - 10%    | OVER TABLE C403.2.3       | \$          |
|                         | SIZE                                            |                         | C403.2.3                  | 1           |
|                         | CATEGORY<br>(BTUH)                              | SUBCATEGORY             | MINIMUM<br>FEFICIENCY (a) | INCR<br>FFI |
|                         |                                                 |                         |                           |             |
|                         |                                                 |                         |                           | 14.2        |
| AIR COND,<br>AIR COOLED | < 65,000<br>(<= 5 TONS)                         | SINGLE PACKAGE          | 13.0 SEER                 | 14.3        |
|                         |                                                 |                         |                           |             |
| SECTION OTH             | ER THAN ELECTRIC RES                            | SISTANCE HEAT OR NO H   | EAT.                      |             |
| TABLE C403.2.3          | (2) - ELECTRICALLY OP                           | ERATED UNITARY AND A    | PPLIED HEAT PUMPS         |             |
| GWTR SRCE               | < 17,000                                        | 86° FWT                 | 12.2 SEER                 | 13.         |
| COOL MODE               |                                                 | 00 2001                 |                           |             |
| GWTR SRCE               | >= 17,000                                       | 86° EWT                 | 13.0 EER                  | 14.         |
| COOL MODE               | <135,000                                        |                         |                           | AT 8        |
| GROUND LOOP             | < 135,000                                       | 68° EWT                 | 4.3 COP                   | 4.<br>AT 7  |
|                         |                                                 |                         |                           |             |
| a. DEDUCT 0.2 F         | ROM THE REQUIRED E                              | SISTANCE HEAT OR NO H   | S WITH A HEATING<br>EAT.  |             |
| C403.2.4 THRU C         | 403.2.11                                        |                         |                           |             |
| HVAC SYSTE              | MS ARE FULLY COMPL                              | IANT WITH THE REQUIRE   | MENTS FOR HVAC SY         | (STEM       |
| CONTROL, V              | ENTILATION, ENERGY                              | RECOVERY, DUCT AND P    | LENUM INSULATION          | AND         |
| SEALING, PI             | PING INSULATION, AN                             | D SYSTEM COMPLETION.    |                           |             |
| C403.2.12 - AIR S       | YSTEM DESIGN AND C                              | CONTROL                 |                           |             |
| ALL FANS IN             | ISTALLED ON THE PRO                             | JECT ARE 5 HP OR LESS A | ND ARE EXEMPT FRO         | M THE       |

|                                                                                                                                            | 20<br>ENERC<br>COMMERC                                                                                                                                                                                                   | 18 NORTH<br>GY CONSER                                                                                                                               | CAROLINA<br>RVATION C                                                                        | A<br>ODE<br>MARY                     |                  | Becoming the<br>Leading Designer of<br>High Performance Facilities<br>in the Nation with a<br>Specialty in Alternative<br>Delivery Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C401 METHOD C                                                                                                                              | DF COMPLIANCE                                                                                                                                                                                                            |                                                                                                                                                     |                                                                                              |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2018 NCECC<br>ASHRAE 90.                                                                                                                   | CHAPTER 4<br>1-2013 PRESCRIPTIVE                                                                                                                                                                                         |                                                                                                                                                     |                                                                                              | IDED (2018 NCEC)<br>IDED (90.1-2013) | C)               | 333 Fayetteville St, Ste 225<br>Raleigh, NC 27601<br>P: 919.573.6350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                            | NG LIGHTING, HVAC, A                                                                                                                                                                                                     |                                                                                                                                                     |                                                                                              | AIN)                                 |                  | F: 919.573.6355<br>www.sfla.biz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                            | AL EFFICIENCY PACKAG                                                                                                                                                                                                     | SE OPTIONS                                                                                                                                          |                                                                                              |                                      | ïΥ               | SIL+a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C406.3 RED                                                                                                                                 | ANCED LTG DENSITY                                                                                                                                                                                                        | 5                                                                                                                                                   | C406.7 SERVICE W/                                                                            | ATER HEATING                         |                  | ARCHITECTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C301 CLIMATE Z<br>3A - PAMLIO                                                                                                              | ONE<br>CO COUNTY, NORTH CA                                                                                                                                                                                               | AROLINA                                                                                                                                             |                                                                                              |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DESIGN<br>EXTERIC<br>wi                                                                                                                    | CONDITIONS<br>DR (ASHRAE 90.1-2013 T<br>nter dry bulb                                                                                                                                                                    | TABLE D-1)                                                                                                                                          | 22.5° F.                                                                                     |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| su<br>INTERIC                                                                                                                              | mmer dry bulb<br>mmer wet bulb<br>DR (2018 NCECC SECTIO                                                                                                                                                                  | N C302.1)                                                                                                                                           | 93.3° F.<br>78.1° F.                                                                         |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| wi<br>su                                                                                                                                   | nter dry bulb<br>mmer dry bulb                                                                                                                                                                                           |                                                                                                                                                     | 72° F.<br>75° F.                                                                             |                                      |                  | HILL CAROLIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C403.2 HEATING                                                                                                                             | 5 & COOLING LOADS AI<br>HEATING LOAD                                                                                                                                                                                     | ND EQUIPMENT & SYS                                                                                                                                  | 2,289,200 BTUH (pe                                                                           | ak)                                  |                  | ALL DADAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                            | HEATING CAPACITY                                                                                                                                                                                                         |                                                                                                                                                     | 4,288,800 BTOH (pe                                                                           | ак)                                  |                  | MGINEER CENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| INSTALLED<br>C403.2.3 & C406                                                                                                               | COOLING CAPACITY                                                                                                                                                                                                         | EASED HVAC EQUIPME                                                                                                                                  | 4,562,097 BTUH                                                                               |                                      |                  | 06/12/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                            | ERV P                                                                                                                                                                                                                    | HERMAL LOOP SERVIN<br>ROVIDING VENTILATIC                                                                                                           | G WSHP WITH HOT GAS<br>N.<br>BLE C403 2 3                                                    | S REHEAT.                            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                            | D HVAC EQUIP EFFICIE                                                                                                                                                                                                     | NCY COMPLIANCE - 10                                                                                                                                 | % OVER TABLE C403.2.3                                                                        | 3                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EQUIP TYPE                                                                                                                                 | SIZE<br>CATEGORY<br>(BTUH)                                                                                                                                                                                               | SUBCATEGORY                                                                                                                                         | C403.2.3<br>MINIMUM<br>EFFICIENCY (a)                                                        | 10%<br>INCREASED<br>EFF. (a)         | DESIGN<br>EFFIC. | e optima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TABLE C403.2.3<br>AIR COND,                                                                                                                | (1) - UNITARY AIR CON<br>< 65,000                                                                                                                                                                                        | DITIONERS AND CONE<br>SPLIT SYSTEM &                                                                                                                | DENSING UNITS                                                                                | 14.3 SEER                            | SEE              | <u>150 Fayetteville St., Suite 520, Raleigh, NC 27601</u><br>Phone: 919-926-2200 - www.optimaengineering.com<br>North Carolina License Number C-0914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AIR COOLED<br>a. DEDUCT 0.2 F                                                                                                              | (<= 5 TONS)                                                                                                                                                                                                              | SINGLE PACKAGE                                                                                                                                      | ITS WITH A HEATING                                                                           |                                      | SCHEDULE         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SECTION OTH<br>TABLE C403.2.3                                                                                                              | ER THAN ELECTRIC RES<br>(2) - ELECTRICALLY OPI                                                                                                                                                                           | SISTANCE HEAT OR NO<br>ERATED UNITARY AND                                                                                                           | HEAT.<br>APPLIED HEAT PUMPS                                                                  |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| GWTR SRCE                                                                                                                                  | < 17,000                                                                                                                                                                                                                 | 86° EWT                                                                                                                                             | 12.2 SEER                                                                                    | 13.4 SEER                            | SEE<br>SCHEDULE  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| COOL MODE                                                                                                                                  | <135,000<br>< 135,000                                                                                                                                                                                                    | 68° EWT                                                                                                                                             | 4.3 COP                                                                                      | AT 86° EWT<br>4.7 COP                | SCHEDULE         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a. DEDUCT 0.2 F                                                                                                                            | ROM THE REQUIRED E                                                                                                                                                                                                       | ERS AND IEERS FOR UN                                                                                                                                | NITS WITH A HEATING                                                                          | AT 70° EWT                           | SCHEDULE         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ALL FANS IN<br>REQUIREME<br>FANS ABOV<br>OPTION 1 - FAN                                                                                    | SYSTEM DESIGN AND C<br>INSTALLED ON THE PRO<br>INTS.<br>IE 5 HP MEET THE CFM<br>SYSTEM MOTOR NAM                                                                                                                         | ONTROL<br>JECT ARE 5 HP OR LESS<br>LIMITATIONS SHOWN<br>EPLATE HP - TABLE C4(<br>ANT                                                                | 5 AND ARE EXEMPT FRC<br>BELOW:<br>)3.2.12.1(1)<br>VARIABLE                                   | OM THESE                             |                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NAMEPLATE<br>MOTOR HP                                                                                                                      |                                                                                                                                                                                                                          | ME<br>JM CFM                                                                                                                                        | VOLUME<br>MINIMUM CFM                                                                        | DESIGN                               | CFM              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10<br>15                                                                                                                                   | 9,091 C<br>13,636 C                                                                                                                                                                                                      | FM<br>CFM                                                                                                                                           | 6,667 CFM<br>10,000 CFM                                                                      | SEE SCHE<br>SEE SCHE                 | DULE<br>DULE     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 20<br>25<br>30                                                                                                                             | 22,727 (<br>27,272 (                                                                                                                                                                                                     |                                                                                                                                                     | 16,667 CFM<br>20,000 CFM                                                                     | SEE SCHE<br>SEE SCHE<br>SEE SCHE     | DULE             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 40<br>50                                                                                                                                   | 36,364 (<br>45,455 (                                                                                                                                                                                                     | CFM<br>CFM                                                                                                                                          | 26,667 CFM<br>33,333 CFM                                                                     | SEE SCHE<br>SEE SCHE                 | DULE             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C403.3 - ECONO                                                                                                                             | MIZERS (PRESCRIPTIVE                                                                                                                                                                                                     | )<br>ATER ECONOMIZER CO                                                                                                                             | MPLIANT WITH C403.3                                                                          |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PROJECT MI<br>C403.4 - HYDRO<br>AND<br>PROJECT CC<br>REQUIREME<br>PROJECT CC<br>REQUIREME<br>C405.8 - ELECTRI<br>ELECTRICAL<br>C405.8, EXC | EETS AN ECONOMIZER<br>NIC AND MULTIPLE-ZO<br>EQUIPMENT (PRESCRIF<br>ONSISTS OF ONLY SING<br>INTS OF C403.4.<br>ONSISTS OF HVAC SYST<br>INTS OF C403.4.<br>ICAL MOTORS (MANDA<br>MOTORS HAVE BEEN S<br>IEPT WHERE EXEMPT. | EXCEPTION LISTED IN<br>ONE HVAC SYSTEMS CO<br>PTIVE)<br>SILE ZONE DX SYSTEMS,<br>TEMS FULLY COMPLIAN<br>ATORY REQUIREMENTS<br>SPECIFIED TO MEET MIN | C403.3<br>INTROL<br>EXEMPT FROM THE PR<br>T WITH THE PRESCRIPT<br>).<br>NIMUM EFFICIENCY REG | ESCRIPTIVE<br>IVE<br>QUIREMENTS PER  | 2                | OUNTY<br>-12 SCHOOL<br>ro, NC, 28515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| APPEIC                                                                                                                                     | COMMISSIONING<br>REA IS LESS THAN 10,00<br>DNING REQUIREMENTS<br>REA IS GREATER THAN 1<br>DNING PER SECTION C4                                                                                                           | 0 SQUARE FEET AND IS<br>OF SECTION C408.<br>10,000 SQUARE FEET AI<br>108.                                                                           | S EXEMPT FROM THE SY                                                                         | STEM                                 |                  | O       O       O       O         O       O       O       O         O       O       O       O         O       O       O       O         O       O       O       O         O       O       O       O         O       O       O       O         Image: Construction       Enscription       Enscription         Image: Construction       Enscription       Enscription         Image: Subsection       Enscription       Enscription         Image: Enscription       Enscription       Enscription         Image: Enscrip |
|                                                                                                                                            |                                                                                                                                                                                                                          |                                                                                                                                                     |                                                                                              |                                      |                  | LEGEND AND NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

M-602

Sheet No. 1 of 42

# EQUIVALENT MANUFACTURERS LISTING

LISTING OF MANUFACTURER'S NAME DOES NOT GUARANTEE APPROVAL. ALL EQUIPMENT MUST MEET OR EXCEED QUALITY AND CAPACITIES OF SPECIFIED EQUIPMENT. FINAL APPROVAL WILL BE BASED ON EQUIPMENT SUBMITTALS. ANY MANUFACTURER NOT LISTED BUT WISHING TO BID THIS PROJECT SHALL SUBMIT A WRITTEN REQUEST A MINIMUM OF 7 DAYS PRIOR TO BID DATE OR AS INDICATED IN THE SPECIFICATIONS, ALL EQUIPMENT LISTED IN THE PROJECT SCHEDULE IS TO BE CONSIDERED DESIGN BASIS EQUIPMENT. PRIOR APPROVAL IS REQUIRED FOR ALL MANUFACTURERS NOT LISTED. (ALPHABETICAL ORDER) AIR DISTRIBUTION: CARNES, KRUEGER, METAL\*AIRE, NAILOR, PRICE, TITUS, TUTTLE & BAILEY

DDC CONTROLS: ALERTON, HONEYWELL, SEIMENS, TRANE, SCHNEIDER ELECTRIC, JOHNSON CONTROLS, ALC DUCTLESS SPLIT SYSTEMS: DAIKIN, MITSUBISHI, TRANE

- ENERGY RECOVERY VENTILATORS: COOK, ENGINEERED AIR, GREENHECK ELECTRIC WALL/UNIT HEATERS: BERKO, MARKEL, MODINE, QMARK, RAYWALL
- FANS: COOK, GREENHECK, PENN, TWIN CITY FIRE DAMPERS: GREENHECK, NAILOR, NCA, POTTORFF, RUSKIN, SAFE-AIRE
- KITCHEN HOODS: CAPTIVE-AIRE, ACCUREX, SELECT AIR SYSTEMS
- LAB EXHAUST FANS: COOK, GREENHECK, TWIN CITY LOUVER: GREENHECK, POTTORFF, RUSKIN, SAFE-AIR

PUMPS & HYDRONIC EQUIPMENT: ARMSTRONG, BELL & GOSSETT, PATTERSON, TACO, GRUNDFOS SPIRAL DUCTWORK: EASTERN SHEET METAL, HAMLIN, LINDAB, UNITED MCGILL

WATER SOURCE HEAT PUMPS: CARRIER, CLIMATE-MASTER, DAIKIN, FLORIDA HEAT PUMP, TRANE, ENERTECH/TETCO

100% OUTSIDE AIR MAKE-UP UNITS: AAON, ENGINEERED AIR, DESERT AIRE, GREENHECK

NOTE: ALL COST ASSOCIATED WITH SUBSTITUTED/NON-DESIGN BASIS EQUIPMENT TO COMPLY WITH BASIS OF DESIGN, INCLUDING PROVIDING MAINTENANCE ACCESS, CLEARANCE, PIPING, SHEET METAL, ELECTRICAL, REPLACEMENT OF SYSTEM COMPONENTS, BUILDING ALTERATIONS, ETC., SHALL BE INCLUDED IN THE ORIGINAL BASE BID. NO ADDITIONAL COST ASSOCIATED WITH SUBSTITUTED/NON-DESIGN BASIS EQUIPMENT WILL BE APPROVED DURING CONSTRUCTION AND ALL COST WILL BE THE RESPONSIBILITY OF THE MECHANICAL CONTRACTOR.

|                          |                                                |                   |                            |            |            |             |              |                  | WA                     | TER        | r sou            | RCE                | HEA              | T PU         | MP S         | SCHED             | OULE         |              |        |                |              |                |                               |                    |              |                                |                  |                    |                                    |
|--------------------------|------------------------------------------------|-------------------|----------------------------|------------|------------|-------------|--------------|------------------|------------------------|------------|------------------|--------------------|------------------|--------------|--------------|-------------------|--------------|--------------|--------|----------------|--------------|----------------|-------------------------------|--------------------|--------------|--------------------------------|------------------|--------------------|------------------------------------|
|                          |                                                |                   | EVAPORATOR<br>COOLING COIL | SUPPLY AIR | OUTSIDE    | EAIR        |              | COOL             | ING CAPACITY           | н          | IEATING CA       | PACITY             |                  | CON          | IDENSER V    | /ATER             | FAN M        | OTOR         | со     | MPRESSO        | R (EA)       | ELI            | ECTRICAL I                    | ΟΑΤΑ               |              |                                |                  |                    |                                    |
| SYMBOI                   | FOUIP SERVES                                   | EQUIPMENT<br>TYPF | NOMINAL<br>(TONS)          | FLOW       |            | DESIGN      | FSP          | TC (BTUH)        |                        | FR         | BTUH             | COP                | RFFRIG           | GPM          | PD           | RUNOUT            | НР           | FLA          | ΟΤΥ    | MOTOR          | RIA          |                |                               |                    | моср         | MANUFACTURER                   | MODEL            | ASSOCIATED         | ACCESSORIES                        |
| WSHP-1-1.1               | 1502 MS ANIMAL SCIENCE                         | VERTICAL          | 3.0                        | 1200       | 135        | 135         | 0.30         | 39213            | 28860 14               | 4.3        | 51836            | 5.2                | R-410A           | 9.0          | 7.3          | 1/2"              | 0.50         | 16.9         | 1      | 72.0           | 13.5         | 265 V          | 1 2                           | 0.3                | 30.0         | ENERTECH                       | TVS036           | CWP-3V             | HGR, DAC                           |
| WSHP-1-1.2<br>WSHP-1-1.3 | 1504 HS ANIMAL SCIENCE<br>1506 HORTICULTURE    | VERTICAL          | 3.0                        | 1200       | 105<br>135 | 105<br>135  | 0.30         | 39213<br>39213   | 28860 14<br>28860 14   | 4.3<br>4.3 | 51836<br>51836   | 5.2<br>5.2         | R-410A<br>R-410A | 9.0<br>9.0   | 7.3          | 1/2"              | 0.50         | 16.9<br>16.9 | 1      | 72.0           | 13.5<br>13.5 | 265 V<br>265 V | 1 2<br>1 2                    | 0.3                | 30.0<br>30.0 | ENERTECH<br>ENERTECH           | TVS036<br>TVS036 | CWP-3V<br>CWP-3V   | HGR, DAC<br>HGR. DAC               |
| WSHP-1-1.4               | 1508 EMT CLASS                                 | HORIZONTAL        | 5.0                        | 2000       | 125        | 125         | 0.30         | 60821            | 40890 13               | 3.2        | 84171            | 4.4                | R-410A           | 15.0         | 14.7         | 1/2"              | 1.00         | 22.1         | 1      | 52.0           | 7.8          | 460 V          | 3 1                           | 2.4                | 20.0         | ENERTECH                       | TZS060           | CWP-5H             | HGR, DAC                           |
| WSHP-1-1.5               | 1510 HVAC LAB                                  | HORIZONTAL        | 5.0                        | 2000       | 90         | 90          | 0.30         | 60821            | 40890 13               | 3.2        | 84171            | 4.4                | R-410A           | 15.0         | 14.7         | 1/2"              | 1.00         | 22.1         | 1      | 52.0           | 7.8          | 460 V          | 3 1                           | 2.4                | 20.0         | ENERTECH                       | TZS060           | CWP-5H             | HGR, DAC                           |
| WSHP-1-2.1<br>WSHP-1-2.2 | 2102 HS SS CLASSROOM<br>2104 HS CLASSROOM      | VERTICAL          | 3.0                        | 1200       | 135        | 135         | 0.30         | 39213<br>39213   | 28860 12               | 4.3<br>4.3 | 51836            | 5.2                | R-410A<br>R-410A | 9.0          | 7.3          | 1/2               | 0.50         | 16.9         | 1      | 72.0           | 13.5         | 265 V<br>265 V | 1 2                           | 0.3                | 30.0         | ENERTECH                       | TVS036<br>TVS036 | CWP-3V<br>CWP-3V   | HGR, DAC<br>HGR, DAC               |
| WSHP-1-2.3               | 2106 HS CLASSROOM                              | VERTICAL          | 3.0                        | 1200       | 135        | 135         | 0.30         | 39213            | 28860 14               | 4.3        | 51836            | 5.2                | R-410A           | 9.0          | 7.3          | 1/2"              | 0.50         | 16.9         | 1      | 72.0           | 13.5         | 265 V          | 1 2                           | 0.3                | 30.0         | ENERTECH                       | TVS036           | CWP-3V             | HGR, DAC                           |
| WSHP-1-2.4               | 2108 HS CLASSROOM                              | VERTICAL          | 3.0                        | 1200       | 135        | 135         | 0.30         | 39213<br>30213   | 28860 14               | 4.3        | 51836            | 5.2                | R-410A           | 9.0          | 7.3          | 1/2"              | 0.50         | 16.9         | 1      | 72.0           | 13.5         | 265 V          | 1 2                           | 0.3                | 30.0         | ENERTECH                       | TVS036           | CWP-3V             | HGR, DAC                           |
| WSHP-1-3.1               | MEDIA/COLLAB                                   | VERTICAL          | 6.0                        | 2400       | 360        | 360         | 0.30         | 68954            | 45860 13               | +.3<br>3.2 | 89017            | 4.3                | R-410A           | 18.0         | 18.8         | 1/2"              | 1.00         | 10.9         | 1      | 66.1           | 8.2          | 460 V          | 3 1                           | 2.9                | 20.0         | ENERTECH                       | TVS030           | CWP-5V<br>CWP-6V   | HGR, DAC                           |
| WSHP-1-3.2               | MEDIA/COLLAB                                   | VERTICAL          | 6.0                        | 2400       | 360        | 360         | 0.75         | 68954            | 45860 13               | 3.2        | 89017            | 4.3                | R-410A           | 18.0         | 18.8         | 1/2"              | 1.00         | 10.8         | 1      | 66.1           | 8.2          | 460 V          | 3 1                           | 2.9                | 20.0         | ENERTECH                       | TVS072           | CWP-6V             | HGR, DAC                           |
| WSHP-2-1.1<br>WSHP-2-1.2 | 1512 CLASSROOM                                 | VERTICAL          | 3.0<br>5.0                 | 2000       | 135<br>90  | 135<br>90   | 0.30         | 39213<br>60821   | 28860 14<br>40890 13   | 4.3<br>3.2 | 51836<br>84171   | 5.2<br>4.4         | R-410A<br>R-410A | 9.0<br>15.0  | 7.3          | 1/2"              | 0.50         | 16.9<br>22.1 | 1      | 72.0<br>52.0   | 13.5<br>7.8  | 265 V<br>460 V | 1 2<br>3 1                    | 0.3<br>2.4         | 30.0<br>20.0 | ENERTECH                       | TVS036<br>TZS060 | CWP-3V<br>CWP-5H   | HGR, DAC<br>HGR, DAC               |
| WSHP-2-1.3               | 1516 WELDING LAB                               | HORIZONTAL        | 5.0                        | 2000       | 120        | 120         | 0.50         | 60821            | 40890 13               | 3.2        | 84171            | 4.4                | R-410A           | 15.0         | 14.7         | 1/2"              | 1.00         | 22.1         | 1      | 52.0           | 7.8          | 460 V          | 3 1                           | 2.4                | 20.0         | ENERTECH                       | TZS060           | CWP-5H             | HGR, DAC                           |
| WSHP-2-1.4               | 1718 BIOLOGY                                   | VERTICAL          | 5.0                        | 2000       | 125        | 125         | 0.30         | 59121            | 41032 13               | 3.8        | 78340            | 4.7                | R-410A           | 15.0         | 15.0         | 1/2"              | 1.00         | 10.4         | 1      | 52.0           | 7.8          | 460 V          | 3 1                           | 2.4                | 20.0         | ENERTECH                       | TVS060           | CWP-5V             | HGR, DAC                           |
| WSHP-2-1.5<br>WSHP-2-2.1 | 1/16 PHYSICS<br>2112 HS CLASSROOM              | VERTICAL          | 5.0<br>3.0                 | 1200       | 125        | 125         | 0.30         | 59121<br>39213   | 41032 13<br>28860 14   | 3.8<br>4.3 | 78340            | 4. <i>1</i><br>5.2 | R-410A<br>R-410A | 15.0<br>9.0  | 15.0<br>7.3  | 1/2"              | 1.00<br>0.50 | 10.4         | 1      | 52.0<br>72.0   | 7.8<br>13.5  | 460 V<br>265 V | 3 1<br>1 2                    | 2.4<br>0.3         | 30.0         | ENERTECH                       | TVS060<br>TVS036 | CWP-5V<br>CWP-3V   | HGR, DAC<br>HGR. DAC               |
| WSHP-2-2.2               | 2114 HS CLASSROOM                              | VERTICAL          | 3.0                        | 1200       | 135        | 135         | 0.30         | 39213            | 28860 14               | 4.3        | 51836            | 5.2                | R-410A           | 9.0          | 7.3          | 1/2"              | 0.50         | 16.9         | 1      | 72.0           | 13.5         | 265 V          | 1 2                           | 0.3                | 30.0         | ENERTECH                       | TVS036           | CWP-3V             | HGR, DAC                           |
| WSHP-2-2.3               | 2116 HS CLASSROOM                              | VERTICAL          | 3.0                        | 1200       | 135        | 135         | 0.30         | 39213            | 28860 14               | 4.3        | 51836            | 5.2                | R-410A           | 9.0          | 7.3          | 1/2"              | 0.50         | 16.9         | 1      | 72.0           | 13.5         | 265 V          | 1 2                           | 0.3                | 30.0         | ENERTECH                       | TVS036           | CWP-3V             | HGR, DAC                           |
| WSHP-2-2.4<br>WSHP-2-2.5 | 2118 HS CLASSROOM<br>2120 HS CLASSROOM         | VERTICAL          | 3.0                        | 1200       | 135        | 135         | 0.30         | 39213<br>39213   | 28860 12               | 4.3<br>4.3 | 51836            | 5.2                | R-410A<br>R-410A | 9.0          | 7.3          | 1/2"<br>1/2"      | 0.50         | 16.9         | 1      | 72.0           | 13.5         | 265 V<br>265 V | 1 2                           | 0.3                | 30.0         | ENERTECH                       | TVS036<br>TVS036 | CWP-3V<br>CWP-3V   | HGR, DAC<br>HGR, DAC               |
| WSHP-2-2.6               | 2122 HS CLASSROOM                              | VERTICAL          | 3.0                        | 1200       | 135        | 135         | 0.30         | 39213            | 28860 14               | 4.3        | 51836            | 5.2                | R-410A           | 9.0          | 7.3          | 1/2"              | 0.50         | 16.9         | 1      | 72.0           | 13.5         | 265 V          | 1 2                           | 0.3                | 30.0         | ENERTECH                       | TVS036           | CWP-3V             | HGR, DAC                           |
| WSHP-2-2.7               | MEDIA/COLLAB                                   | HORIZONTAL        | 5.0                        | 2000       | 200        | 200         | 0.75         | 60821            | 40890 13               | 3.2        | 84171            | 4.4                | R-410A           | 15.0         | 14.7         | 1/2"              | 1.00         | 22.1         | 1      | 52.0           | 7.8          | 480 V          | 1 1                           | 2.4                | 20.0         | ENERTECH                       | TZS060           | CWP-5H             | HGR, DAC                           |
| WSHP-2-3.1<br>WSHP-2-3.2 | MEDIA/COLLAB                                   | VERTICAL          | 5.0                        | 2000       | 280        | 280         | 0.30         | 59121            | 41032 13               | 3.8        | 78340            | 4.7                | R-410A<br>R-410A | 15.0         | 15.0         | 1/2"              | 1.00         | 10.4         | 1      | 52.0           | 7.8          | 460 V          | 3 1                           | 4.7<br>2.4         | 20.0         | ENERTECH                       | TVS048           | CWP-4V<br>CWP-5V   | HGR, DAC                           |
| WSHP-2-3.3               | 1612 ADOBE                                     | VERTICAL          | 6.0                        | 2400       | 360        | 360         | 0.30         | 68954            | 45860 13               | 3.2        | 89017            | 4.3                | R-410A           | 18.0         | 18.8         | 1/2"              | 1.00         | 10.8         | 1      | 66.1           | 8.2          | 460 V          | 3 1                           | 2.9                | 20.0         | ENERTECH                       | TVS072           | CWP-6V             | HGR, DAC                           |
| WSHP-3-1.1               | 1708 PHYSICAL SCIENCE                          | VERTICAL          | 5.0                        | 2000       | 125        | 125         | 0.30         | 59121<br>59121   | 41032 13               | 3.8        | 78340            | 4.7                | R-410A           | 15.0         | 15.0         | 1/2"              | 1.00         | 10.4         | 1      | 52.0           | 7.8          | 460 V          | 3 1                           | 2.4                | 20.0         | ENERTECH                       | TVS060           | CWP-5V             | HGR, DAC                           |
| WSHP-3-2.1               | 2218 MS 7TH CLASSROOM                          | VERTICAL          | 3.0                        | 1200       | 125        | 135         | 0.30         | 39213            | 28860 14               | 4.3        | 51836            | 5.2                | R-410A           | 9.0          | 7.3          | 1/2"              | 0.50         | 16.9         | 1      | 72.0           | 13.5         | 265 V          | 1 2                           | 0.3                | 30.0         | ENERTECH                       | TVS036           | CWP-3V<br>CWP-3V   | HGR, DAC                           |
| WSHP-3-2.2               | 2220 MS 7TH CLASSROOM                          | VERTICAL          | 3.0                        | 1200       | 135        | 135         | 0.30         | 39213            | 28860 14               | 4.3        | 51836            | 5.2                | R-410A           | 9.0          | 7.3          | 1/2"              | 0.50         | 16.9         | 1      | 72.0           | 13.5         | 265 V          | 1 2                           | 0.3                | 30.0         | ENERTECH                       | TVS036           | CWP-3V             | HGR, DAC                           |
| WSHP-3-2.3<br>WSHP-3-2.4 | 2222 MS 7TH CLASSROOM                          | VERTICAL          | 3.0                        | 1200       | 135        | 135<br>135  | 0.30         | 39213<br>39213   | 28860 14<br>28860 14   | 4.3<br>1 3 | 51836<br>51836   | 5.2                | R-410A<br>R-410A | 9.0          | 7.3          | 1/2"              | 0.50         | 16.9<br>16.9 | 1      | 72.0           | 13.5         | 265 V<br>265 V | 1 2<br>1 2                    | 0.3                | 30.0         | ENERTECH                       | TVS036           | CWP-3V             | HGR, DAC                           |
| WSHP-3-2.5               | 2226 MS 8TH CLASSROOM                          | VERTICAL          | 3.0                        | 1200       | 135        | 135         | 0.30         | 39213            | 28860 14               | 4.3        | 51836            | 5.2                | R-410A           | 9.0          | 7.3          | 1/2"              | 0.50         | 16.9         | 1      | 72.0           | 13.5         | 265 V          | 1 2                           | 0.3                | 30.0         | ENERTECH                       | TVS036           | CWP-3V             | HGR, DAC                           |
| WSHP-3-2.6               | 2228 MS 8TH CLASSROOM                          | VERTICAL          | 3.0                        | 1200       | 135        | 135         | 0.30         | 39213            | 28860 14               | 4.3        | 51836            | 5.2                | R-410A           | 9.0          | 7.3          | 1/2"              | 0.50         | 16.9         | 1      | 72.0           | 13.5         | 265 V          | 1 2                           | 0.3                | 30.0         | ENERTECH                       | TVS036           | CWP-3V             | HGR, DAC                           |
| WSHP-3-2.7<br>WSHP-3-2.8 | 2230 MS SCIENCE<br>2226 LANGUAGE               | VERTICAL          | 5.0                        | 2000       | 125<br>145 | 125<br>145  | 0.30         | 59121<br>59121   | 41032 13<br>41032 13   | 3.8<br>3.8 | 78340            | 4.7                | R-410A<br>R-410A | 15.0<br>15.0 | 15.0<br>15.0 | 1/2"              | 1.00         | 10.4         | 1      | 52.0<br>52.0   | 7.8          | 460 V<br>460 V | 3 1<br>3 1                    | 2.4<br>2.4         | 20.0         | ENERTECH                       | TVS060<br>TVS060 | CWP-5V<br>CWP-5V   | HGR, DAC<br>HGR. DAC               |
| WSHP-3-2.9               | RESOURCE ROOMS                                 | HORIZONTAL        | 4.0                        | 1600       | 180        | 180         | 0.75         | 49088            | 34682 15               | 5.9        | 62097            | 4.8                | R-410A           | 12.0         | 9.9          | 1/2"              | 0.75         | 17.7         | 1      | 72.0           | 13.0         | 265 V          | 1 2                           | 1.0                | 30.0         | ENERTECH                       | TZS048           | CWP-4H             | HGR, DAC                           |
| WSHP-3-2.10              | GUIDANCE OFFICE                                | HORIZONTAL        | 4.0                        | 1600       | 135        | 135         | 0.75         | 49088            | 34682 15               | 5.9        | 62097            | 4.8                | R-410A           | 12.0         | 9.9          | 1/2"              | 0.75         | 17.7         | 1      | 72.0           | 13.0         | 265 V          | 1 2                           | 1.0                | 30.0         | ENERTECH                       | TZS048           | CWP-4H             | HGR, DAC                           |
| WSHP-3-3.1<br>WSHP-3-3.2 | MEDIA/COLLAB<br>MEDIA/COLLAB                   | VERTICAL          | 6.0                        | 2400       | 350        | 350         | 0.75         | 68954            | 45860 12               | 4.3<br>3.2 | 89017            | 4.3                | R-410A<br>R-410A | 9.0          | 18.8         | 1/2               | 1.00         | 10.8         | 1      | 66.1           | 8.2          | 265 V<br>460 V | <u> </u>                      | 2.9                | 20.0         | ENERTECH                       | TVS036<br>TVS072 | CWP-3V<br>CWP-6V   | HGR, DAC                           |
| WSHP-3-3.3               | MEDIA/COLLAB                                   | VERTICAL          | 6.0                        | 2400       | 350        | 350         | 0.75         | 68954            | 45860 13               | 3.2        | 89017            | 4.3                | R-410A           | 18.0         | 18.8         | 1/2"              | 1.00         | 10.8         | 1      | 66.1           | 8.2          | 460 V          | 3 1                           | 2.9                | 20.0         | ENERTECH                       | TVS072           | CWP-6V             | HGR, DAC                           |
| WSHP-4-1.1               | 1802 HS CTEC LAB 2D ART                        | VERTICAL          | 4.0                        | 1600       | 250        | 250         | 0.30         | 50923            | 34563 16               | 5.8        | 62476            | 5.1                | R-410A           | 12.0         | 10.6         | 1/2"              | 0.75         | 20.7         | 1      | 109.7          | 16.0         | 265 V          | 1 2                           | 4.7                | 40.0         |                                | TVS048           | CWP-4V             | HGR, DAC                           |
| WSHP-4-1.2               | 1806 EC SC WITH LS                             | VERTICAL          | 4.0                        | 1600       | 250        | 250         | 0.30         | 50923            | 34563 16               | 5.8        | 62476            | 5.1                | R-410A           | 12.0         | 10.6         | 1/2"              | 0.75         | 20.7         | 1      | 109.7          | 16.0         | 265 V          | 1 2                           | 4.7                | 40.0         | ENERTECH                       | TVS048           | CWP-4V<br>CWP-4V   | HGR, DAC                           |
| WSHP-4-1.4               | 1702 EC SC                                     | VERTICAL          | 4.0                        | 1600       | 250        | 250         | 0.30         | 50923            | 34563 16               | 5.8        | 62476            | 5.1                | R-410A           | 12.0         | 10.6         | 1/2"              | 0.75         | 20.7         | 1      | 109.7          | 16.0         | 265 V          | 1 2                           | 4.7                | 40.0         | ENERTECH                       | TVS048           | CWP-4V             | HGR, DAC                           |
| WSHP-4-1.5<br>WSHP-4-1.6 | 1704 HS CLASSROOM                              | VERTICAL          | 3.0                        | 1200       | 135        | 135<br>135  | 0.30         | 39213<br>39213   | 28860 14<br>28860 14   | 4.3<br>1 3 | 51836<br>51836   | 5.2                | R-410A<br>R-410A | 9.0          | 7.3          | 1/2"              | 0.50         | 16.9<br>16.9 | 1      | 72.0           | 13.5         | 265 V<br>265 V | 1 2<br>1 2                    | 0.3                | 30.0         | ENERTECH                       | TVS036           | CWP-3V             | HGR, DAC                           |
| WSHP-4-2.1               | 2208 MS 6TH CLASSOOM                           | VERTICAL          | 3.0                        | 1200       | 135        | 135         | 0.30         | 39213            | 28860 14               | 4.3        | 51836            | 5.2                | R-410A           | 9.0          | 7.3          | 1/2"              | 0.50         | 16.9         | 1      | 72.0           | 13.5         | 265 V          | 1 2                           | 0.3                | 30.0         | ENERTECH                       | TVS036           | CWP-3V             | HGR, DAC                           |
| WSHP-4-2.2               | 2210 MS 6TH CLASSROOM                          | VERTICAL          | 3.0                        | 1200       | 135        | 135         | 0.30         | 39213            | 28860 14               | 4.3        | 51836            | 5.2                | R-410A           | 9.0          | 7.3          | 1/2"              | 0.50         | 16.9         | 1      | 72.0           | 13.5         | 265 V          | 1 2                           | 0.3                | 30.0         | ENERTECH                       | TVS036           | CWP-3V             | HGR, DAC                           |
| WSHP-4-2.3<br>WSHP-4-2.4 | 2212 MS 6TH CLASSROOM<br>2214 MS 6TH CLASSROOM | VERTICAL          | 3.0                        | 1200       | 135<br>125 | 135<br>125  | 0.30         | 39213<br>59121   | 28860 14<br>41032 13   | 4.3<br>3.8 | 51836<br>78340   | 5.2<br>4.7         | R-410A           | 9.0<br>15.0  | 7.3          | 1/2"              | 0.50<br>1.00 | 16.9<br>10.4 | 1      | 72.0<br>52.0   | 13.5<br>7.8  | 265 V<br>460 V | 1 2<br>3 1                    | 0.3<br>2.4         | 30.0<br>20.0 | ENERTECH                       | TVS036           | CWP-3V<br>CWP-5V   | HGR, DAC<br>HGR. DAC               |
| WSHP-4-2.5               | 2216 MS 7TH SCIENCE                            | VERTICAL          | 5.0                        | 2000       | 125        | 125         | 0.30         | 59121            | 41032 13               | 3.8        | 78340            | 4.7                | R-410A           | 15.0         | 15.0         | 1/2"              | 1.00         | 10.4         | 1      | 52.0           | 7.8          | 460 V          | 3 1                           | 2.4                | 20.0         | ENERTECH                       | TVS060           | CWP-5V             | HGR, DAC                           |
| WSHP-4-3.1               | MEDIA/COLLAB                                   | VERTICAL          | 6.0                        | 2400       | 360        | 360         | 0.75         | 68954            | 45860 13               | 3.2        | 89017            | 4.3                | R-410A           | 18.0         | 18.8         | 1/2"              | 1.00         | 10.8         | 1      | 66.1           | 8.2          | 460 V          | 3 1                           | 2.9                | 20.0         | ENERTECH                       | TVS072           | CWP-6V             | HGR, DAC                           |
| WSHP-4-3.2<br>WSHP-5-1.1 | 1310 WRESTLING ROOM                            | HORIZONTAL        | 4.0<br>5.0                 | 2000       | 95         | 220<br>95   | 0.75         | 60821            | 40890 13               | 3.2        | 62476<br>84171   | 4.4                | R-410A<br>R-410A | 12.0         | 10.6         | 1/2 <sup>**</sup> | 1.00         | 20.7         | 1      | 52.0           | 7.8          | 265 V<br>460 V | <u>    1      2</u><br>3    1 | 4.7<br>2.4         | 20.0         | ENERTECH                       | TVS048<br>TZS060 | CWP-4V<br>CWP-5H   | HGR, DAC<br>HGR. DAC               |
| WSHP-5-1.2               | 1308 WEIGHT ROOM                               | HORIZONTAL        | 5.0                        | 2000       | 75         | 75          | 0.50         | 60821            | 40890 13               | 3.2        | 84171            | 4.4                | R-410A           | 15.0         | 14.7         | 1/2"              | 1.00         | 22.1         | 1      | 52.0           | 7.8          | 460 V          | 3 1                           | 2.4                | 20.0         | ENERTECH                       | TZS060           | CWP-5H             | HGR, DAC                           |
| WSHP-5-2.1               | LOCKER ROOMS                                   | VERTICAL          | 3.0                        | 1200       | 100        | 100         | 1.00         | 39213            | 28860 14               | 4.3        | 51836            | 5.2                | R-410A           | 9.0          | 7.3          | 1/2"              | 0.50         | 16.9         | 1      | 72.0           | 13.5         | 265 V          | 1 2                           | 0.3                | 30.0         | ENERTECH                       | TVS036           | CWP-3V             | HGR, DAC                           |
| WSHP-5-2.2<br>WSHP-5-2.3 | LOCKER ROOMS                                   | VERTICAL          | 2.0                        | 800        | 50         | 50          | 1.00         | 27924            | 22526 14               | 4.8        | 34642            | 5.1                | R-410A           | 6.0          | 5.7          | 1/2"              | 0.75         | 11.2         | 1      | 54.0           | 9.0          | 265 V<br>265 V | 1 2<br>1 1                    | 4. <i>1</i><br>3.5 | 20.0         | ENERTECH                       | TVS048           | CWP-4V<br>CWP-2V   | HGR, DAC                           |
| WSHP-5-G1                | MS GYM                                         | VERTICAL          | 20.0                       | 8000       | 200        | 755         | 1.25         | 237400           | 176800 13              | 3.2        | 298200           | 4.4                | R-410A           | 50.0         | 9.0          | 2"                | 3.22         | 39.8         | 2      | 123.0          | 15.0         | 460 V          | 3 4                           | 3.6                | 60.0         | CLIMATEMASTER                  | RB-240           | CWP-20             | HGR,DAC,DCV,VFD                    |
| WSHP-5-G2<br>WSHP-6-D1   | MS GYM<br>DINING                               | VERTICAL          | 20.0                       | 8000       | 200<br>520 | 755<br>520  | 1.25<br>1.25 | 237400<br>165400 | 176800 13<br>116900 14 | 3.2<br>1.4 | 298200<br>198000 | 4.4                | R-410A<br>R-410A | 50.0<br>35.0 | 9.0<br>6.5   | 2"                | 3.22<br>1.46 | 39.8<br>30 5 | 2      | 123.0<br>125.0 | 15.0<br>13.2 | 460 V          | 3 4<br>3 2                    | 3.6<br>3.8         | 60.0<br>45.0 | CLIMATEMASTER<br>CLIMATEMASTER | RB-240<br>RB-168 | CWP-20             | HGR,DAC,DCV,VFD                    |
| WSHP-6-K1                | KITCHEN                                        | VERTICAL          | 6.0                        | 2400       | 200        | 200         | 0.75         | 68954            | 45860 13               | 3.2        | 89017            | 4.3                | R-410A           | 18.0         | 18.8         | 1/2"              | 1.00         | 10.8         | 1      | 66.1           | 8.2          | 460 V          | 3 1                           | 2.9                | 20.0         | ENERTECH                       | TVS072           | CWP-6V             | HGR, DAC                           |
| WSHP-6-K2                | KITCHEN                                        | VERTICAL          | 2.0                        | 800        | 50         | 50          | 0.75         | 27924            | 22526 14               | 4.8        | 34642            | 5.8                | R-410A           | 6.0          | 5.7          | 1/2"              | 0.33         | 11.2         | 1      | 54.0           | 9.0          | 265 V          | 1 1                           | 3.5                | 20.0         | ENERTECH                       | TVS024           | CWP-2V             | HGR, DAC                           |
| WSHP-6-L1<br>WSHP-7-G1   | LOBBY<br>HS GYM                                | VERTICAL          | 12.5<br>25.0               | 10000      | 300        | 700<br>1405 | 1.25         | 165400<br>311100 | 116900 14<br>229300 13 | +.4<br>3.3 | 198000<br>369000 | 4.3<br>4.2         | к-410A<br>R-410A | 35.0<br>62.5 | 6.5<br>11.0  | 2"                | 1.46<br>7.65 | 30.5<br>55.9 | 1<br>2 | 125.0          | 13.2<br>21.6 | 460 V<br>460 V | 3<br>3 6                      | 3.8<br>1.3         | 45.0<br>80.0 | CLIMATEMASTER                  | кв-168<br>RB-300 | CWP-12.5<br>CWP-25 | HGR,DAC,DCV,VFD<br>HGR,DAC,DCV.VFD |
| WSHP-7-G2                | HS GYM                                         | VERTICAL          | 25.0                       | 10000      | 300        | 1405        | 1.25         | 311100           | 229300 13              | 3.3        | 369000           | 4.2                | R-410A           | 62.5         | 11.0         | 2"                | 7.65         | 55.9         | 2      | 147.0          | 21.6         | 460 V          | 3 6                           | 1.3                | 80.0         | CLIMATEMASTER                  | RB-300           | CWP-25             | HGR,DAC,DCV,VFD                    |
| WSHP-8-A1                |                                                | VERTICAL          | 3.0                        | 1200       | 150        | 150         | 0.75         | 39213<br>50121   | 28860 14               | 4.3        | 51836            | 5.2                | R-410A           | 9.0          | 7.3          | 1/2"              | 0.50         | 16.9         | 1      | 72.0           | 13.5         | 265 V          | 1 2                           | 0.3                | 30.0         | ENERTECH                       | TVS036           | CWP-3V             | HGR, DAC                           |
| W3H1-0-AZ                |                                                | VERTICAL          | 5.0                        | 2000       | 100        | 100         | U./D         | וצועכ            | 41032 3                | 0.0        | 10340            | 4./                | ⊼-4IUA           | 13.0         | 15.0         | 1/2               | 1.00         | 10.4         |        | 52.0           | 1.0          | 40U V          | <b>b</b>   1                  | ۷.4                | 20.0         | EINEKTECH                      | 103000           | CVVP-5V            | IIGN, DAL                          |

NOTES:

COOLING COIL CAPACITY AND EFFICIENCY BASED ON 80°/67° ENTERING AIR AND 85°F. ENTERING CONDENSER WATER TEMPERATURE. HEATING CAPACITY AND EFFICIENCY BASED ON 50° ENTERING CONDENSER WATER TEMPERATURE. 2. PROVIDE UNITS WITH: SCHNEIDER ELECTRIC SMART STRUCTURE WSHP CONTROLLER (OR EQUAL, BY CONTROLS CONTRACTOR), FILTER, U.L. LABEL, HOSE KIT, SELF BALANCING VALVE, BALL VALVE, AND STRAINER AS INDICATED ON WATER SOURCE HEAT PUMP PIPING DETAIL.

3. PROVIDE UNITS WITH REFRIGERANT DETECTION SYSTEMS (RDS) 4. PROVIDE COMBINATION THERMOSTAT, HUMIDITY SENSOR FOR HGR UNITS FOR SPACE HUMIDIDTY CONTROL.

5. PROVIDE HOT GAS REHEAT WHERE INDICATED FOR HUMIDITY CONTROL, INDICATED BY 'HGR', SEE SEQUENCE OF OPERATION.

6. PROVIDE CONSTANT SPEED AND VARIABLE SPEED UNITS WITH SINGLE POINT POWER CONNECTION. PROVIDE UNITS WITH INTEGRAL DISCONNECTS. 7. ALL WATER SOURCE HEAT PUMPS SHALL BE PROVIDED WITH OPEN PROTOCOL CONTROLLERS.

8. PROVIDE EACH UNIT WITH A IONIZATION TYPE SMOKE DETECTOR, INSTALLED IN THE RETURN DUCT WIRED TO SHUT DOWN THE UNIT UPON ACTIVATION. SMOKE DETECTOR SHALL BE SUPPLIED, WIRED FOR INTERFACE WITH FIRE ALARM SYSTEM AND UNIT SHUTDOWN BY THE ELECTRICAL CONTRACTOR. SMOKE DETECTOR SHALL BE INSTALLED IN THE RETURN DUCT BY THE MECHANICAL CONTRACTOR.

9. PROVIDE DEMAND CONTROL VENTILATION CONTROLS WHERE INDICATED FOR OUTSIDE AIR AIRFLOW/DAMPER CONTROL, INDICATED BY 'DCV', SEE SEQUENCE OF OPERATION. 10. PROVIDE DYNAMIC AIR CLEANING FILTERS FOR UNITS WHERE INDICATED , INDICATED BY 'DAC'.

11. PROVIDE UNITS WITH CONDENSATE PUMP WHEN NOT GRAVITY DRAINED

INFLATION REDUCTION ACT OF 2022 (IRA).

CLEARLY INDICATE WHICH REFRIGERANT IS BASE BID, AND SHALL PROVIDE AN ALTERNATE FOR EQUAL EQUIPMENT UTILIZING R454B.

|                                          |                                                                                                                                                            | SUPPLY AIR                                                                                                                                                                                                                                                               |                                                                                                                                                           |                                                                   |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
|                                          |                                                                                                                                                            | SUPPLY E.SP. (IN                                                                                                                                                                                                                                                         |                                                                                                                                                           |                                                                   |
| SYMBOL                                   | SUPPLY (CFM)                                                                                                                                               | H20)                                                                                                                                                                                                                                                                     | FAN HP                                                                                                                                                    | E)                                                                |
| ERV-1                                    | 1500                                                                                                                                                       | 0.75                                                                                                                                                                                                                                                                     | 0.75 hp                                                                                                                                                   |                                                                   |
| ERV-2                                    | 2100                                                                                                                                                       | 0.75                                                                                                                                                                                                                                                                     | 1.50 hp                                                                                                                                                   |                                                                   |
| NOTES:                                   |                                                                                                                                                            |                                                                                                                                                                                                                                                                          |                                                                                                                                                           |                                                                   |
| 1.<br>2<br>3<br>4<br>5<br><u>ACCESSO</u> | EFER TO S<br>ENERGY WI<br>UL TESTED<br>10-YEAR WI<br>UNIT TO BE<br><u>RIES:</u><br>A. BLOV<br>B. ACCE<br>C. MER<br>D. PREM<br>E. INSU<br>F. MOU<br>G. UNIT | FECIFICATION 237223<br>HEEL, HEAT AND HUM<br>FLAMMABILITY AND S<br>HEEL WARRANTY; 2-YE<br>CONTROLLED ON/OF<br>VER/MOTOR PACKAGE<br>SS DOORS FOR ACCES<br>/-8 FILTERS FOR SUPPI<br>IIUM EFFICIENT BLOW<br>LATED CABINET CONS<br>NTING FEET FOR INST.<br>SUPPLY INTAKE AND | - AIR-TO-A<br>IDITY TRAN<br>MOKE GEN<br>AR WARRA<br>F BY BAS.<br>S WITH AD<br>S TO BLOW<br>LY AND EXH<br>ER MOTOR<br>TRUCTION.<br>ALLATION A<br>EXHAUST L | JUS<br>SFE<br>ERA<br>NT<br>JUS<br>ZERS<br>JAU<br>S.<br>AT F<br>OW |

BID ALTERNATE #5: REPLACE SPECIFIED MECHANICAL HEAT PUMPS WITH MECHANICAL HEAT PUMPS THAT WILL SATISFY THE DOMESTIC CONTENT REQUIREMENTS TO QUALIFY FOR DOMESTIC CONTENT BONUS CREDIT BASED ON SECTIONS 45, 45Y, 48, AND 48E, OF THE INTERNAL REVENUE CODE. PUBLIC LAW 17-169, 136 STAT. 1818 (AUGUST 16, 2022), COMMONLY KNOWN AS THE

BID ALTERNATE #6: EQUIPMENT USING REFRIGERANT R410A IS BEING PHASED OUT DUE TO ENVIRONMENTAL PROTECTION AGENCY (EPA) REGULATIONS. REFRIGERANT R454B IS BEING UTILIZED BY MOST MANUFACTURERS AS THE REPLACEMENT MOVING FORWARD. EQUIPMENT SELECTIONS HAVE NOT BEEN MADE AVAILABLE UNTIL RECENTLY. ALL EQUIPMENT BIDS SHALL

|         |                 |         | ENERG         | ( RECOV       | ERY VENT              |          | SCHED    | ULE             |                      |          |       |        |         |      |
|---------|-----------------|---------|---------------|---------------|-----------------------|----------|----------|-----------------|----------------------|----------|-------|--------|---------|------|
|         | EXHAUST AIR     |         |               | SUMMER SUPPL  | Y AIR CONDITIONS (°F. | )        |          | WINTER SUPPLY A | AIR CONDITIONS (°F.) |          |       | ELECTR | ICAL    |      |
|         | EXH. E.S.P. (IN |         |               |               |                       |          | DRY BULF |                 |                      |          |       |        |         |      |
| . (CFM) | H20)            | FAN HP  | DRY BULB (F°) | WET BULB (F°) | SPECIFIC HUMIDITY     | ENTHALPY | (F°)     | WET BULB (F°)   | SPECIFIC HUMIDITY    | ENTHALPY | MCA   | MOCP   | Voltage | Phas |
| 1860    | 0.75            | 1.00 hp | 93.3          | 78.1          | 0.017264              | 41.4     | 22.5     | 18.8            | 0.001201             | 6.7      | 4.8 A | 15.0 A | 460 V   | 3    |
| 2535    | 0.75            | 2.00 hp | 93.3          | 78.1          | 0.017264              | 41.4     | 22.5     | 18.8            | 0.001201             | 6.7      | 7.9 A | 15.0 A | 460 V   | 3    |
|         |                 |         |               |               |                       |          |          |                 |                      |          |       |        |         |      |

R ENERGY RECOVERY FOR ADDITIONAL REQUIREMENTS.

FER TYPE. AHRI CERTIFIED. ATION THAT MEETS NFPA 90A AND 90B TEST STANDARDS FOR COMMERCIAL APPLICATIONS.

TY ON BALANCE OF UNIT FROM DATE OF SUBSTANTIAL COMPLETION.

## ISTABLE SHEAVES.

RS, CORE AND FILTERS. UST. PROVIDE FILTER MONITORING.

## FLOOR LEVEL.

V LEAKAGE MOTORIZED DAMPERS.

|          |                                         |                            | I      | PUMP S                                 | CHEDULE                                                     |                                                           |                                                      |                                   |                                     |                              |
|----------|-----------------------------------------|----------------------------|--------|----------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|-----------------------------------|-------------------------------------|------------------------------|
|          |                                         |                            |        |                                        | PUMP                                                        |                                                           |                                                      |                                   |                                     |                              |
|          |                                         |                            |        | FLOW                                   | INDIVIDUAL PUMP                                             |                                                           | Rated Speed                                          |                                   |                                     |                              |
| SYMBOL   | MANUFACTURER                            | MODEL NO.                  | TYPE   | DESIGN                                 | HEAD                                                        | MOTOR POWER                                               | (RPM)                                                | VOLT                              | PH                                  | REMA                         |
| CWP-2V   | GEOFLO                                  | UPS26-116                  | INLINE | 6.0 GPM                                | 32.9 FT                                                     | 0.167 hp                                                  |                                                      | 208 V                             | 1                                   | A                            |
| CWP-3V   | TACO                                    | 2400-45                    | INLINE | 9.0 GPM                                | 33.7 FT                                                     | 0.330 hp                                                  | 3450                                                 | 208 V                             | 1                                   | В                            |
| CWP-4H   | TACO                                    | 2400-45                    | INLINE | 12.0 GPM                               | 35.0 FT                                                     | 0.330 hp                                                  | 3450                                                 | 208 V                             | 1                                   | В                            |
| CWP-4V   | TACO                                    | 2400-50                    | INLINE | 12.0 GPM                               | 35.3 FT                                                     | 0.500 hp                                                  | 3450                                                 | 208 V                             | 1                                   | В                            |
| CWP-5H   | TACO                                    | 2400-50                    | INLINE | 15.0 GPM                               | 37.4 FT                                                     | 0.500 hp                                                  | 3450                                                 | 208 V                             | 1                                   | В                            |
| CWP-5V   | TACO                                    | 2400-50                    | INLINE | 15.0 GPM                               | 37.5 FT                                                     | 0.500 hp                                                  | 3450                                                 | 208 V                             | 1                                   | В                            |
| CWP-6V   | TACO                                    | 1915                       | INLINE | 18.0 GPM                               | 39.4 FT                                                     | 0.500 hp                                                  | 1760                                                 | 208 V                             | 1                                   | В                            |
| CWP-12.5 | TACO                                    | 1915                       | INLINE | 31.3 GPM                               | 36.1 FT                                                     | 1.000 hp                                                  | 1760                                                 | 208 V                             | 1                                   | В                            |
| CWP-20   | TACO                                    | 1911                       | INLINE | 50.0 GPM                               | 71.9 FT                                                     | 2.000 hp                                                  | 1760                                                 | 208 V                             | 1                                   | C                            |
| CWP-25   | TACO                                    | 1911                       | INLINE | 62.5 GPM                               | 73.7 FT                                                     | 3.000 hp                                                  | 1760                                                 | 208 V                             | 1                                   | C                            |
| NOTES:   |                                         |                            | REM    | ARKS:                                  |                                                             |                                                           |                                                      |                                   |                                     | -                            |
| 1.       | ALL PUMPS SHALL B<br>HIGH EFFICIENCY M( | E FURNISHED WITH<br>DTORS. |        | A. PROVIDE<br>B. PROVIDE<br>C. PROVIDE | ONE DOUBLE PUMP &<br>TWO PUMPS AT ASSO<br>ONE PUMP AT ASSOC | KIT AT ASSOCIATED<br>DCIATED WSHP WIT<br>CIATED WSHP WITH | WSHP WITH COI<br>TH INDIVIDUAL CO<br>I INDIVIDUAL CO | NNECTION<br>ONNECTION<br>NNECTION | NS FOR TH<br>ONS FOR E<br>NS FOR TH | E KIT.<br>ACH PUM<br>E PUMP. |





| SYMBOL         MANUFACTURER         MODEL NO.           ODU-1         Mitsubishi Electric         PUY-A24NHA7(-BS)           ODU-2         Mitsubishi Electric         PUY-A18NKA7(-BS)           ODU-3         Mitsubishi Electric         PUY-A18NKA7(-BS)           ODU-4         Mitsubishi Electric         PUY-A18NKA7(-BS)           DUCTLESS A/C CONDENSING UNIT SCHEDULE NOTES:         1.         COOLING CAPACITY @ 95 AMBIENT.           2.         ALL UNITS SHALL BE U.L. LISTED AND ASHRAE         3.           MOUNT UNITS ON A 4" THICK CONCRETE PAD         4.           MOUNT UNITS ON ROOF ON EQUIPMENT SUP         5.           PROVIDE UNITS WITH CONDENSER COIL HAIL         6.           PROVIDE UNITS WITH CONDENSER COIL HAIL         6.           PROVIDE UNITS ON ROOF ON EQUIPMENT SUP         5.           FOR REFRIGERANT LINE APPLICATIONS WITH A         THE FOLLOWING ACCESSORIES SHALL BE PROV           COMPRESSOR CRANKCASE HEATER.         -           COMPRESSORT START ASSIST CAPACITO         -           WIND BAFFLES (FOR UNIT MOUNTED ON         -           SEACOAST PROTECTION FOR COILS.         -           -FOR INDOOR UNIT LOCATED ABOVE OUT         AN INVERTED VAPOR LINE TRAP MUST B           -FOR INDOOR UNIT LOCATED BELOW OUT         AN INVERTED VAPOR LINE TRAP MUST B           -FO                                                                      |                                                           |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| SYMBOL         MANUFACTURER         MODEL NO.           ODU-1         Mitsubishi Electric         PUY-A24NHA7(-BS)           ODU-2         Mitsubishi Electric         PUY-A18NKA7(-BS)           ODU-3         Mitsubishi Electric         PUY-A18NKA7(-BS)           ODU-4         Mitsubishi Electric         PUY-A18NKA7(-BS)           DUCTLESS A/C CONDENSING UNIT SCHEDULE NOTES:         1.         COOLING CAPACITY @ 95 AMBIENT.           2.         ALL UNITS SHALL BE U.L. LISTED AND ASHRAE         3.           MOUNT UNITS ON A 4" THICK CONCRETE PAD         4.         MOUNT UNITS ON ROOF ON EQUIPMENT SUP           5.         PROVIDE UNITS WITH CONDENSER COIL HAIL         6.           PROVIDE UNITS ON ROOF ON EQUIPMENT SUP         5.         PROVIDE UNIT COILS WITH SEACOAST PROTEC           7.         FOR REFRIGERANT LINE APPLICATIONS WITH A         THE FOLLOWING ACCESSORIES SHALL BE PROV           -COMPRESSOR CRANKCASE HEATER.         - COMPRESSORT START ASSIST CAPACITO           - WIND BAFFLES (FOR UNIT MOUNTED ON         - SEACOAST PROTECTION FOR COILS.           - FOR INDOOR UNIT LOCATED ABOVE OUT         AN INVERTED VAPOR LINE TRAP MUST B           - FOR INDOOR UNIT LOCATED BELOW OUT         AN INVERTED VAPOR LINE TRAP MUST B           - FOR INDOOR UNIT LOCATED BELOW OUT         BID ALTERNATE #6: EQUIPMENT USING REFRIGERANT R           FORWARD. |                                                           |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                |    |
| SYMBOLMANUFACTURERMODEL NO.ODU-1Mitsubishi ElectricPUY-A24NHA7(-BS)ODU-2Mitsubishi ElectricPUY-A18NKA7(-BS)ODU-3Mitsubishi ElectricPUY-A18NKA7(-BS)ODU-4Mitsubishi ElectricPUY-A18NKA7(-BS)DUCTLESS A/C CONDENSING UNIT SCHEDULE NOTES:1.COOLING CAPACITY @ 95 AMBIENT.2.ALL UNITS SHALL BE U.L. LISTED AND ASHRAE3.MOUNT UNITS ON A 4" THICK CONCRETE PAD4.MOUNT UNITS ON ROOF ON EQUIPMENT SUPI5.PROVIDE UNITS WITH CONDENSER COIL HAIL6.PROVIDE UNITS WITH CONDENSER COIL HAIL7.FOR REFRIGERANT LINE APPLICATIONS WITH ATHE FOLLOWING ACCESSORIES SHALL BE PROV-COMPRESSOR CRANKCASE HEATER COMPRESSORT START ASSIST CAPACITOR- WIND BAFFLES (FOR UNIT MOUNTED ON- SEACOAST PROTECTION FOR COILSFOR HORIZONTAL CONFIGURATION: PRO- FOR INDOOR UNIT LOCATED ABOVE OUTAN INVERTED VAPOR LINE TRAP MUST BI-FOR INDOOR UNIT LOCATED BELOW OUTBID ALTERNATE #6: EQUIPMENT USING REFRIGERANT RFORWARD. EQUIPMENT SELECTIONS HAVE NOT BEEN I                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                           |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                |    |
| ODU-1Mitsubishi ElectricPUY-A24NHA7(-BS)ODU-2Mitsubishi ElectricPUY-A18NKA7(-BS)ODU-3Mitsubishi ElectricPUY-A18NKA7(-BS)ODU-4Mitsubishi ElectricPUY-A18NKA7(-BS)DUCTLESS A/C CONDENSING UNIT SCHEDULE NOTES:1.COOLING CAPACITY @ 95 AMBIENT.2.ALL UNITS SHALL BE U.L. LISTED AND ASHRAE 93.MOUNT UNITS ON A 4" THICK CONCRETE PAD4.MOUNT UNITS ON ROOF ON EQUIPMENT SUPI5.PROVIDE UNITS WITH CONDENSER COIL HAIL6.PROVIDE UNITS WITH CONDENSER COIL HAIL7.FOR REFRIGERANT LINE APPLICATIONS WITH A7.THE FOLLOWING ACCESSORIES SHALL BE PROV6.PROVIDE UNIT COILS WITH SEACOAST PROTEC7.FOR REFRIGERANT LINE APPLICATIONS WITH A7.THE FOLLOWING ACCESSORIES SHALL BE PROV6.PROVIDE UNIT COILS WITH SEACOAST PROTECTION7.FOR REFRIGERANT LINE APPLICATIONS WITH A7.THE FOLLOWING ACCESSORIES SHALL BE PROV6.PROVIDE UNIT COILS WITH SEACOAST PROTECTION7.FOR REFRIGERANT LINE APPLICATIONS WITH A7.THE FOLLOWING ACCESSORIES SHALL BE PROV6.PROVIDE UNIT DOWING ACCESSORIES SHALL BE PROV7.FOR REFRIGERANT LINE APPLICATIONS WITH A7.THE FOLLOWING ACCESSORIES SHALL BE PROV8COMPRESSOR CRANKCASE HEATER.9COMPRESSOR CRANKCASE HEATER.9FOR INDOOR UNIT LOCATED ABOVE OUT9.AN INVERTED VAPOR LINE TRAP MUST BI9FOR INDOOR UNIT LOCATED BELOW OUT </td <td>SYMBOL</td> <td>MANUFACTURER</td> <td>MODEL NO.</td> <td></td>                                                                                                 | SYMBOL                                                    | MANUFACTURER                                                                                                                                                                                                                                                                                                                                                    | MODEL NO.                                                                                                                                                                                                                                                                                      |    |
| ODU-2Mitsubishi ElectricPUY-A18NKA7(-BS)ODU-3Mitsubishi ElectricPUY-A18NKA7(-BS)ODU-4Mitsubishi ElectricPUY-A18NKA7(-BS)DUCTLESS A/C CONDENSING UNIT SCHEDULE NOTES:1.COOLING CAPACITY @ 95 AMBIENT.2.ALL UNITS SHALL BE U.L. LISTED AND ASHRAE 33.MOUNT UNITS ON A 4" THICK CONCRETE PAD4.MOUNT UNITS ON ROOF ON EQUIPMENT SUPI5.PROVIDE UNITS WITH CONDENSER COIL HAIL6.PROVIDE UNITS WITH CONDENSER COIL HAIL7.FOR REFRIGERANT LINE APPLICATIONS WITH ATHE FOLLOWING ACCESSORIES SHALL BE PROV-COMPRESSOR CRANKCASE HEATER COMPRESSORT START ASSIST CAPACITOR- WIND BAFFLES (FOR UNIT MOUNTED ON- SEACOAST PROTECTION FOR COILSFOR HORIZONTAL CONFIGURATION: PRO- FOR INDOOR UNIT LOCATED ABOVE OUTAN INVERTED VAPOR LINE TRAP MUST BI-FOR INDOOR UNIT LOCATED BELOW OUTBID ALTERNATE #6: EQUIPMENT USING REFRIGERANT RFORWARD. EQUIPMENT SELECTIONS HAVE NOT BEEN I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ODU-1                                                     | Mitsubishi Electric                                                                                                                                                                                                                                                                                                                                             | PUY-A24NHA7(-BS)                                                                                                                                                                                                                                                                               |    |
| ODU-3Mitsubishi ElectricPUY-A18NKA7(-BS)ODU-4Mitsubishi ElectricPUY-A18NKA7(-BS)DUCTLESS A/C CONDENSING UNIT SCHEDULE NOTES:1.COOLING CAPACITY @ 95 AMBIENT.2.ALL UNITS SHALL BE U.L. LISTED AND ASHRAE 93.MOUNT UNITS ON A 4" THICK CONCRETE PAD4.MOUNT UNITS ON ROOF ON EQUIPMENT SUPI5.PROVIDE UNITS WITH CONDENSER COIL HAIL 06.PROVIDE UNITS WITH CONDENSER COIL HAIL 07.FOR REFRIGERANT LINE APPLICATIONS WITH ATHE FOLLOWING ACCESSORIES SHALL BE PROV-COMPRESSOR CRANKCASE HEATER COMPRESSOR CRANKCASE HEATER COMPRESSOR T START ASSIST CAPACITOR- WIND BAFFLES (FOR UNIT MOUNTED ON- SEACOAST PROTECTION FOR COILSFOR HORIZONTAL CONFIGURATION: PRO- FOR INDOOR UNIT LOCATED ABOVE OUTAN INVERTED VAPOR LINE TRAP MUST BI-FOR INDOOR UNIT LOCATED BELOW OUTBID ALTERNATE #6: EQUIPMENT USING REFRIGERANT RFORWARD. EQUIPMENT SELECTIONS HAVE NOT BEEN I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ODU-2                                                     | Mitsubishi Electric                                                                                                                                                                                                                                                                                                                                             | PUY-A18NKA7(-BS)                                                                                                                                                                                                                                                                               |    |
| ODU-4Mitsubishi ElectricPUY-A18NKA7(-BS)DUCTLESS A/C CONDENSING UNIT SCHEDULE NOTES:1.COOLING CAPACITY @ 95 AMBIENT.2.ALL UNITS SHALL BE U.L. LISTED AND ASHRAE 93.MOUNT UNITS ON A 4" THICK CONCRETE PAD4.MOUNT UNITS ON ROOF ON EQUIPMENT SUPP5.PROVIDE UNITS WITH CONDENSER COIL HAIL 06.PROVIDE UNIT COILS WITH SEACOAST PROTECT7.FOR REFRIGERANT LINE APPLICATIONS WITH ATHE FOLLOWING ACCESSORIES SHALL BE PROV-COMPRESSOR CRANKCASE HEATER COMPRESSORT START ASSIST CAPACITOR- WIND BAFFLES (FOR UNIT MOUNTED ON- SEACOAST PROTECTION FOR COILSFOR HORIZONTAL CONFIGURATION: PRO- FOR INDOOR UNIT LOCATED ABOVE OUTAN INVERTED VAPOR LINE TRAP MUST BI-FOR INDOOR UNIT LOCATED BELOW OUTBID ALTERNATE #6: EQUIPMENT USING REFRIGERANT RFORWARD. EQUIPMENT SELECTIONS HAVE NOT BEEN I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ODU-3                                                     | Mitsubishi Electric                                                                                                                                                                                                                                                                                                                                             | PUY-A18NKA7(-BS)                                                                                                                                                                                                                                                                               |    |
| DUCTLESS A/C CONDENSING UNIT SCHEDULE NOTES:         1. COOLING CAPACITY @ 95 AMBIENT.         2. ALL UNITS SHALL BE U.L. LISTED AND ASHRAE         3. MOUNT UNITS ON A 4" THICK CONCRETE PAD         4. MOUNT UNITS ON ROOF ON EQUIPMENT SUPI         5. PROVIDE UNITS WITH CONDENSER COIL HAIL         6. PROVIDE UNIT COILS WITH SEACOAST PROTEC         7. FOR REFRIGERANT LINE APPLICATIONS WITH A         THE FOLLOWING ACCESSORIES SHALL BE PROV         -COMPRESSOR CRANKCASE HEATER.         - COMPRESSORT START ASSIST CAPACITOR         - WIND BAFFLES (FOR UNIT MOUNTED ON         - SEACOAST PROTECTION FOR COILS.         - FOR HORIZONTAL CONFIGURATION: PRO         - FOR INDOOR UNIT LOCATED ABOVE OUT         AN INVERTED VAPOR LINE TRAP MUST BI         -FOR INDOOR UNIT LOCATED BELOW OUT         BID ALTERNATE #6: EQUIPMENT USING REFRIGERANT R         FORWARD. EQUIPMENT SELECTIONS HAVE NOT BEEN I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ODU-4                                                     | Mitsubishi Electric                                                                                                                                                                                                                                                                                                                                             | PUY-A18NKA7(-BS)                                                                                                                                                                                                                                                                               |    |
| <ol> <li>COOLING CAPACITY @ 95 AMBIENT.</li> <li>ALL UNITS SHALL BE U.L. LISTED AND ASHRAE 9</li> <li>MOUNT UNITS ON A 4" THICK CONCRETE PAD</li> <li>MOUNT UNITS ON ROOF ON EQUIPMENT SUPP</li> <li>PROVIDE UNITS WITH CONDENSER COIL HAIL 0</li> <li>PROVIDE UNITS WITH CONDENSER COIL HAIL 0</li> <li>PROVIDE UNIT COILS WITH SEACOAST PROTECT</li> <li>FOR REFRIGERANT LINE APPLICATIONS WITH A<br/>THE FOLLOWING ACCESSORIES SHALL BE PROV<br/>-COMPRESSOR CRANKCASE HEATER.</li> <li>COMPRESSORT START ASSIST CAPACITOD<br/>- WIND BAFFLES (FOR UNIT MOUNTED ON<br/>- SEACOAST PROTECTION FOR COILS.</li> <li>FOR HORIZONTAL CONFIGURATION: PRO</li> <li>FOR INDOOR UNIT LOCATED ABOVE OUT<br/>AN INVERTED VAPOR LINE TRAP MUST BI<br/>-FOR INDOOR UNIT LOCATED BELOW OUT</li> <li>BID ALTERNATE #6: EQUIPMENT USING REFRIGERANT R<br/>FORWARD. EQUIPMENT SELECTIONS HAVE NOT BEEN 1</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DUCTLESS                                                  | A/C CONDENSING UNI                                                                                                                                                                                                                                                                                                                                              | T SCHEDULE NOTES:                                                                                                                                                                                                                                                                              |    |
| -FOR INDOOR UNIT LOCATED BELOW OUT<br><u>BID ALTERNATE #6</u> : EQUIPMENT USING REFRIGERANT R<br>FORWARD. EQUIPMENT SELECTIONS HAVE NOT BEEN I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1. C<br>2. A<br>3. M<br>4. N<br>5. P<br>6. P<br>7. F<br>T | LL UNITS SHALL BE U.L.<br>IOUNT UNITS ON A 4"<br>IOUNT UNITS ON ROOF<br>ROVIDE UNITS WITH CO<br>ROVIDE UNIT COILS WI<br>OR REFRIGERANT LINE /<br>HE FOLLOWING ACCESS<br>-COMPRESSOR CRAI<br>- COMPRESSOR CRAI<br>- COMPRESSOR CRAI<br>- COMPRESSOR ST/<br>- WIND BAFFLES (FO<br>- SEACOAST PROTEC<br>-FOR HORIZONTAL C<br>- FOR INDOOR UNIT<br>AN INVERTED VAPO | LISTED AND ASHRAI<br>THICK CONCRETE PA<br>ON EQUIPMENT SU<br>DNDENSER COIL HAII<br>TH SEACOAST PROTE<br>APPLICATIONS WITH<br>SORIES SHALL BE PRO<br>NKCASE HEATER.<br>ART ASSIST CAPACITO<br>R UNIT MOUNTED O<br>TION FOR COILS.<br>CONFIGURATION: PR<br>LOCATED ABOVE OL<br>DR LINE TRAP MUST |    |
| BID ALTERNATE #6: EQUIPMENT USING REFRIGERANT R<br>FORWARD. EQUIPMENT SELECTIONS HAVE NOT BEEN I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           | -FOR INDOOR UNIT                                                                                                                                                                                                                                                                                                                                                | LOCATED BELOW OU                                                                                                                                                                                                                                                                               | JT |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>BID ALTER</u><br>FORWARD                               | NATE #6: EQUIPMENT U<br>D. EQUIPMENT SELECTIO                                                                                                                                                                                                                                                                                                                   | JSING REFRIGERANT<br>ONS HAVE NOT BEEN                                                                                                                                                                                                                                                         | R  |

### ELECTRIC HEATER SCHEDULE ELECTRICA MANUFACTURER Equipment CFM ACCESSORIES SYMBOL LOCATION BTUH KW AMPS VOLTAGE PH (MARKEL) Weight EWH-1 S1 STAIR 01 175 6,824 7.50 A 277 E3324TD-RP A,B,D,G,H 2 27 lb EWH-2 V1300 VEST 175 5,120 1.5 4.10 A 277 1 E3322TD-RP A,B,D,G,H 26 lb EWH-3 **S4 EXIT STAIR** 7.20 A E3324TD-RP A,B,D,G,H 175 6,824 277 27 lb EWH-4 V1500 VEST 175 2,560 0.75 6.25 A 120 E3321TD-RP 26 lk A,B,D,G,H EWH-5 A,B,D,G,H V1700 VEST 2,560 0.75 6.25 A 120 E3321TD-RP 26 lb 175 EWH-6 **S5 EXIT STAIR** 7.20 A E3324TD-RP A,B,D,G,H 175 6,824 277 27 lb EWH-7 17.30 A 1 A,B,D,G,H E1210 ELECTRICAL ROOM 175 16,378 4.8 277 E3327TD-RP 29 lb 175 7,677 EWH-8 10.80 A 277 E3325TD-RP A,B,D,G,H 1314 EQPT. 3 29 lb 1411 FIRE PUMP ROOM 175 16,378 4.8 17.30 A FWH-9 1 E3327TD-RP 29 lb A,B,D,G,H 277 NOTES: **ELECTRIC HEATER ACCESSORIES:** 1. HEATING CAPACITY BASED ON 65° F E.A.T. A. DISCONNECT SWITCH SEE PLANS FOR TYPE OF THERMOSTAT REQUIRED (WALL MOUNTED OR UNIT B. BUILT IN THERMOSTAT MOUNTED). UNIT HEATERS SHOWN WITHOUT THERMOSTAT INDICATED SHALL BE C. WALL MOUNTED THERMOSTAT PROVIDED WITH A UNIT MOUNTED THERMOSTAT. D. WALL MOUNTING BRACKETS 3. SET TO MAINTAIN 45°F. E. CEILING MOUNTED BRACKETS F. ADJUSTABLE DISCHARGE LOUVERS G. PENCIL PROOF LOUVERS H. CABINET FOR SURFACE MOUNTING KITCHEN HOOD SCHEDULE (FURNISHED AND INSTALLED BY THE M.C.) KEF-1 CAPTIVE-AIRE MODEL DU240HFA EXHAUST FAN; 3,590 CFM, 1.4" E.S.P., 3-HP 460V-3PH FAN MOTOR, 311 VARIABLE SPEED KITCHEN HOODS LBS OPERATING WEIGHT. MUA-1 CAPTIVE-AIRE MODEL A2-D.250-20D NATURAL GAS HEAT MAKE-UP AIR UNIT; 2872 CFM, 0.75" E.S.P., 2-HP 460V-3PH FAN MOTOR, 4.8A MCA, 15A MOCP, 163,610 INPUT BTUs, 150,521 OUTPUT BTUs, 48 DEG F TEMP RISE, 680 LBS OPERATING WEIGHT. CONFIGURATION, AND DIAGNOSTIC INFORMATION. CONSTRUCTION: KH-1 CAPTIVE-AIRE MODEL 6624 ND-2-PSP-F; 11'-6"x6'-8"x2'-0" DEEP HOOD WITH 6" DEEP SUPPLY PLENUMS AT THE DCV INCLUDES: FRONT; 2300 CFM EXHAUST @ 1.02" S.P. (MAX.); 1840 CFM SUPPLY @ 0.17" S.P. (MAX.) • A SMART CONTROLLER KH-2 CAPTIVE-AIRE MODEL 6624 ND-2-PSP-F; 6'-0"x6'-8"x2'-0" DEEP HOOD WITH 6" DEEP SUPPLY PLENUMS AT LCD SCREEN INTERFACE FRONT; 1290 CFM EXHAUST @ 0.438" S.P. (MAX.); 1032 CFM SUPPLY @ 0.15" S.P. (MAX.) DUCT TEMPERATURE SENSORS ROOM TEMPERATURE SENSOR ALL 430 STAINLESS STEEL CONSTRUCTION. ALL COMPONENTS SHALL BE U.L. LISTED AND LABELED. PROVIDE A VARIABLE FREQUENCY DRIVES REMOTE CONTROL PANEL MOUNTED ON FACE OF HOOD WITH MASTER DISCONNECT SWITCH, STARTER FOR FAN, CONTROL VOLTAGE TRANSFORMER, FIRE CONTROL SYSTEM RELAY AND TERMINAL STRIP. MOUNT HOOD 6'-8" ABOVE FINISH FLOOR, PROVIDE STAINLESS STEEL ENCLOSURE AROUND TOP OF HOOD AS REQUIRED TO CLOSE TO CEILING. PROVIDE VERTICAL END PANELS FOR ENDS OF HOOD. HOOD SHALL BE PROVIDED WITH: AUTOMATICALLY OPERATED FIXED PIPE FIRE SUPPRESSION SYSTEM IN ACCORDANCE WITH NFPA 96, CONTROL SWITCHES AND PILOT LIGHT FOR EXHAUST FAN, TWO4' VAPORPROOF LED LAMP LIGHT FIXTURES (MIN. 2 PER HOOD), AND STAINLESS STEEL GREASE FILTERS. FIRE SUPPRESSION SYSTEM SHALL BE ANSUL R-102 WITH ANSULEX LIQUID FIRE SUPPRESSANT. REMOTE PULL STATION FOR ACTIVATION OF FIRE SUPPRESSION SYSTEM SHALL BE PROVIDED AND INSTALLED WHERE INDICATED ON THE PLANS. FIRE SUPPRESSION SYSTEM SHALL BE UL 300 LISTED. CONTRACTOR SHALL PROVIDE MANUAL VOLUME DAMPER IN EACH SUPPLY DUCT COLLAR FOR MAKE-UP AIR BALANCING. ADDITIONAL FIRE SUPPRESSION NOTES (2018 NC FIRE CODE) 904.12.1 A MANUAL ACTUATION DEVICE SHALL BE LOCATED AT OR NEAR A MEANS OF EGRESS FROM THE COOKING AREA, A MINIMUM OF 10 FEET AND A MAXIMUM OF 20 FEET FROM THE KITCHEN EXHAUST SYSTEM. THE MANUAL ACTUATION DEVICE SHALL BE LOCATED A MINIMUM OF 3.5 FEET AND A MAXIMUM OF 4 FEET ABOVE THE FLOOR AND CLEARLY INDICATE THE HAZARD PROTECTED. THE MANUAL ACTUATION SHALL REQUIRE A MAXIMUM FORCE OF 40 POUNDS AND A MAXIMUM MOVEMENTOF 14 INCHES TO ACTUATE THE FIRE SUPPRESSION SYSTEM. 904.12.2 THE ACTUATION OF THE FIRE SUPPRESSION SYSTEM SHALL AUTOMATICALLY SHUT DOWN THE FUEL AND ELECTRICAL POWER SUPPLY TO THE COOKING EQUIPMENT. THE FUEL AND ELECTRICAL SUPPLY RESET SHALL BE MANUAL. NOTES: KITCHEN HOOD SHALL BE CONSTRUCTED AND INSTALLED PER NFPA 96. UPON ACTIVATION OF FIRE CONTROL SYSTEM, KITCHEN HOOD EXHAUST FAN SHALL CONTINUE TO OPERATE. PROVIDE INTERLOCK FOR AUTOMATIC OPERATION OF FIRE SUPPRESSION SYSTEM WITH: A. CONTACTORS (BY ELEC. CONTR.) **B. HOOD SUPPLY AND EXHAUST FANS** C. REMOTE MANUAL PULL STATION D. ALL ASSOCIATED AIR HANDLING UNITS E. FIRE ALARM SYSTEM NOTIFICATION (BY ELEC. CONTR.) F. NATURAL GAS SHUT-OFF BAS SHALL MONITOR STATUS AND FREQUENCY HZ OF KITCHEN FANS. SEE SHEET M-503 FOR HOOD DETAILS. KITCHEN HOOD EXHAUST DUCT SHALL BE STAINLESS STEEL. ALL JOINTS AND SEAMS SHALL BE CONSTRUCTED WITH A CONTINUOUS LIQUID-TIGHT EXTERNAL WELD. ALL DUCTWORK SHALL SLOPE A MINIMUM OF 1/4 INCH PER FOOT TOWARD HOOD. PROVIDE CLEANOUTS AT EVERY CHANGE OF DIRECTION IN THE EXHAUST DUCT AND AT 20'-0" (MINIMUM) INTERVALS. THE MECHANICAL CONTRACTOR SHALL PERFORM A LIGHT TEST (AS REQUIRED BY MECHANICAL CODE) FOR ALL JOINTS AND SEAMS IN THE PRESENCE OF THE LOCAL AUTHORITY HAVING JURISDICTION PRIOR TO CONCEALING KITCHEN HOOD EXHAUST DUCTWORK. ALL EXPOSED PIPING WITH FIRE SUPPRESSION SYSTEM SHALL BE COVERED WITH A CHROME SLEEVE. MECHANICAL CONTRACTOR SHALL INSTALL 1/2" CONDUIT IN WALL FOR MANUAL PULL STATION. SEE PLANS FOR LOCATION OF MANUAL PULL STATION (MPS). MECHANICAL CONTRACTOR SHALL BE RESPONSIBLE FOR HOOD CERTIFICATION IN COMPLIANCE WITH LOCAL CODE REQUIREMENTS. CERTIFICATION SHALL BE WITNESSED AND PERFORMED BY A PERSON CERTIFIED THROUGH AABC, TABB, NEBB OR NBC AND SHALL PROVIDE DOCUMENTATION OF PERFORMANCE TO THE CODE OFFICIAL. THIS SHALL INCLUDE WET TEST CAPTURE & CONTAINMENT.ALL EQUIPMENT SHALL BE ENERGIZED AND IN OPERATION DURING THE TEST. TEST SHALL ALSO INCLUDE VERIFYING ACTUAL FLOW RATES VERSUS DESIGN FLOW RATES.

|                            | DUCTLESS A/C CONDENSING UNIT SCHEDULE         REFRIGERANT       LOW    Sound |                 |               |                |                 |                     |          |                |              | EXHAUST FAN SCHEDULE |           |                 |        |         |        |                           |              |                         |               |            |         |                 |             |              |            |                  |                     |          |
|----------------------------|------------------------------------------------------------------------------|-----------------|---------------|----------------|-----------------|---------------------|----------|----------------|--------------|----------------------|-----------|-----------------|--------|---------|--------|---------------------------|--------------|-------------------------|---------------|------------|---------|-----------------|-------------|--------------|------------|------------------|---------------------|----------|
|                            |                                                                              | REFR            | RIGERANT      | LOW            |                 |                     |          | SOUND          |              |                      |           |                 |        |         |        |                           |              |                         |               |            | APPROX. |                 |             | E            | LECTRICAL  | DATA             |                     |          |
| NOMINAL                    |                                                                              |                 |               | AMBIENT S      |                 |                     | т        | PRESSURE       |              |                      |           |                 |        |         | SYMBOL | LOCATION                  | MANUFACTURER | MODEL NO.               | ТҮРЕ          | CFM        | ESP     | DRIVE TYPE      | FAN RPM     | WATTS        | H.P.       | VOLTAGE-PHASEØ   | ACCESSORIES         | CONT     |
| CAPACITY                   | ТҮРЕ                                                                         | ТҮРЕ            | CHARGE        | KIT            | DBT             | DBT                 | EER      | LEVEL          | WEIGHT       | MCA                  | MOCP      | VOLT PH         |        | REMARKS | EF-1   | ADMIN OFFICE              | GREENHECK    | CSP-A250                | CEILING       | 75         | 0.50    | DIRECT          | 770         | 25           | 0.00       | 115 V-1Ø         | A,B,F,G,O           |          |
| 2.0 ton                    | COOLING ONLY                                                                 | R410A           | 7 lb          | Yes            | 93.3 °F         | 22.5 °F             | 12.2     | 47             | 151 lb       | 19.0 A               | 26.0 A    | 208 V 1         |        |         | EF-2   | ADMIN OFFICE              | GREENHECK    | CSP-A250                | CEILING       | 75         | 0.50    | DIRECT          | 770         | 25           | 0.00       | 115 V-1Ø         | A,B,F,G,O           |          |
| 1.5 ton                    | COOLING ONLY                                                                 | R410A           | 4 lb          | Yes            | 93.3 °F         | 22.5 °F             | 10.7     | 44             | 99 lb        | 11.0 A               | 28.0 A    | 208 V 1         |        |         | EF-3   | ADMIN OFFICE              | GREENHECK    | CSP-A250                | CEILING       | 75         | 0.50    | DIRECT          | 770         | 25           | 0.00       | 115 V-1Ø         | A,B,F,G,O           |          |
| 1.5 ton                    | COOLING ONLY                                                                 | R410A           | 4 lb          | Yes            | 93.3 °F         | 22.5 °F             | 10.7     | 44             | 99 lb        | 11.0 A               | 28.0 A    | 208 V 1         |        |         | EF-4   | ADMIN OFFICE              | GREENHECK    | CSP-A250                | CEILING       | 75         | 0.50    | DIRECT          | 770         | 25           | 0.00       | 115 V-1Ø         | A,B,F,G,O           |          |
| 1.5 ton                    | COOLING ONLY                                                                 | R410A           | 4 lb          | Yes            | 93.3 °F         | 22.5 °F             | 10.7     | 44             | 99 lb        | 11.0 A               | 28.0 A    | 208 V 1         |        |         | EF-5   | HS GIRLS V LOCKER 1202    | GREENHECK    | G-095-D                 | DOWNBLAST     | 400        | 0.50    | DIRECT          | 1540        | 1000         | 0.13       | 115 V-1Ø         | A,B,D,E             |          |
|                            |                                                                              |                 |               |                |                 |                     |          |                |              |                      |           |                 |        |         | EF-6   | HS GIRLS JV LOCKER 1203   | GREENHECK    | G-095-D                 | DOWNBLAST     | 400        | 0.50    | DIRECT          | 1540        | 1000         | 0.13       | 115 V-1Ø         | A,B,D,E             |          |
|                            |                                                                              |                 |               |                |                 |                     |          |                |              |                      |           |                 |        |         | EF-7   | ELECTRICAL ROOM           | GREENHECK    | G-120-A                 | DOWNBLAST     | 1,420      | 0.50    | DIRECT          | 1406        | 1000         | 0.50       | 115 V-1Ø         | A,C,D,E             |          |
| 0.1 COMPLIANT.             |                                                                              |                 |               |                |                 |                     |          |                |              |                      |           |                 |        |         | EF-8   | ELECTRICAL ROOM           | GREENHECK    | G-080-D                 | DOWNBLAST     | 180        | 0.50    | DIRECT          | 1330        | 500          | 0.25       | 115 V-1Ø         | A,C,D,E             |          |
| AND PROVIDE M              | ANUFACTURER'S RECOM                                                          | MENDED CLI      | EARANCES AR   | OUND UNITS.    |                 |                     |          |                |              |                      |           |                 |        |         | EF-9   | EQUIP 1314                | GREENHECK    | G-080-D                 | DOWNBLAST     | 180        | 0.50    | DIRECT          | 1330        | 500          | 0.25       | 115 V-1Ø         | A,C,D,E             |          |
| ORT RAILS AS M             | FG. BY ROOF PRODUCTS                                                         | AND SYSTEM      | IS, CORP. (OR | EQUAL) AND PI  | ROVIDE MANUFA   | CTURER'S RECOMME    | ENDED CL | LEARANCES ARG  | OUND UNITS.  |                      |           |                 |        |         | EF-10  | HS BOYS JV LOCKER 1208    | GREENHECK    | G-095-D                 | DOWNBLAST     | 400        | 0.50    | DIRECT          | 1540        | 1000         | 0.13       | 115 V-1Ø         | A,B,D,E             |          |
| UARDS AND LO               | W AMBIENT CONTROLS.                                                          |                 |               |                |                 |                     |          |                |              |                      |           |                 |        |         | EF-11  | HS BOYS LOCKER ROOM 1209  | GREENHECK    | G-095-D                 | DOWNBLAST     | 400        | 0.50    | DIRECT          | 1540        | 1000         | 0.13       | 115 V-1Ø         | A,B,D,E             |          |
| ION                        |                                                                              |                 |               |                |                 |                     |          |                |              |                      |           |                 |        |         | EF-12  | LNDR 1311                 | GREENHECK    | SP-B150                 | CEILING       | 125        | 0.50    | DIRECT          | 911         | 128          | 0.00       | 115 V-1Ø         | A,B,F,G,O           |          |
| TOTAL EQUIVAL              | ENT LENGTH BETWEEN 50                                                        | )'-0" AND 17    | 5'-0".        |                |                 |                     |          |                |              |                      |           |                 |        |         | EF-13  | RR 1205B                  | GREENHECK    | SP-B150                 | CEILING       | 125        | 0.50    | DIRECT          | 911         | 128          | 0.00       | 115 V-1Ø         | A,B,F,G,O           | <u> </u> |
| DED;                       |                                                                              |                 |               |                |                 |                     |          |                |              |                      |           |                 |        |         | EF-14  | RR 1207B                  | GREENHECK    | SP-B150                 | CEILING       | 125        | 0.50    | DIRECT          | 911         | 128          | 0.00       | 115 V-1Ø         | A,B,F,G,O           |          |
| AND RELAY (NO              |                                                                              | COMPRESS        |               | F PHASE UNITS) |                 |                     |          |                |              |                      |           |                 |        |         | EF-15  | CUST 1206                 | GREENHECK    | SP-B150                 | CEILING       | 125        | 0.50    | DIRECT          | 911         | 128          | 0.00       | 115 V-1Ø         | A,B,F,G,O           | <u> </u> |
| ROOFS).                    |                                                                              |                 |               |                | •               |                     |          |                |              |                      |           |                 |        |         | EF-16  | MECH PENTHOUSE M2300      | GREENHECK    | SQ-90                   | INLINE        | 275        | 0.50    | DIRECT          | 1643        | 0            | 0.10       | 115 V-1Ø         | A,B,F,G             |          |
| ,                          |                                                                              |                 |               |                |                 |                     |          |                |              |                      |           |                 |        |         | EF-17  | MECH PENTHOUSE M2300      | GREENHECK    | SQ-90                   | INLINE        | 275        | 0.50    | DIRECT          | 1643        | 0            | 0.10       | 115 V-1Ø         | A,B,F,G             |          |
| IDE LIQUID LINE            | SOLENOID WITHIN 2'-0"                                                        | OUTDOOR U       | UNIT WITH FLO | OW ARROW PO    | INTING TOWARD   | OUTDOOR UNIT. V     | APOR LIN | IE SHOULD SLO  | PE TOWARD IN | IDOOR UNI            | т.        |                 |        |         | EF-18  | KITCHEN                   | GREENHECK    | CSP-A250                | CEILING       | 75         | 0.50    | DIRECT          | 770         | 25           | 0.00       | 115 V-1Ø         | A,B,F,G,O           |          |
| DOOR UNIT (50'-            | 0" MAX.), A LIQUID LINE                                                      | (BI-FLOW) SC    | OLENOID MUS   | T BE INSTALLED | WITHIN 2'-0" OF | OUTDOOR UNIT W      | ITH FLOW | V ARROW POIN   | TING TOWARD  | OUTDOOR              | UNIT.     |                 |        |         | EF-19  | KITCHEN                   | GREENHECK    | CSP-A250                | CEILING       | 75         | 0.50    | DIRECT          | 770         | 25           | 0.00       | 115 V-1Ø         | A,B,F,G,O           |          |
| INSTALLED AT I             | NDOOR UNIT. THE TOP C                                                        | F THE TRAP      | MUST BE GRE   | ATER THAN THI  | E HEIGHT OF THE | INDOOR COIL.        |          |                |              |                      |           |                 |        |         | EF-20  | KITCHEN                   | GREENHECK    | CSP-A250                | CEILING       | 75         | 0.50    | DIRECT          | 770         | 25           | 0.00       | 115 V-1Ø         | A,B,F,G,O           |          |
| OOR UNIT (150 <sup>°</sup> | -0" MAX); A LIQUID LINE                                                      | BI-FLOW) SC     | OLENOID MUS   | I BE INSTALLED | WITHIN 2'-0" OF | OUTDOOR UNIT.       |          |                |              |                      |           |                 |        |         | EF-21  | DISHWASHING               | GREENHECK    | G-080-D                 | DOWNBLAST     | 180        | 0.50    | DIRECT          | 1330        | 500          | 0.25       | 115 V-1Ø         | A,B,D,E             | <u> </u> |
| 10A IS BEING PH            | IASED OUT DUE TO ENVI                                                        | RONMENTAL       | PROTECTION    | AGENCY (EPA)   | REGULATIONS. R  | EFRIGERANT R454B    | IS BEING | GUTILIZED BY M | OST MANUFA   | CTURERS AS           | S THE REF | PLACEMENT MC    | VING   |         | EF-22  | PUMP ROOM                 | GREENHECK    | G-120-A                 | DOWNBLAST     | 1,440      | 0.50    | DIRECT          | 1420        | 1000         | 0.50       | 115 V-1Ø         | A,C,D,E             |          |
| ADE AVAILABLE              | UNTIL RECENTLY. ALL EC                                                       | QUIPMENT B      | IDS SHALL CLE | EARLY INDICATE | WHICH REFRIGE   | RANT IS BASE BID, A | AND SHAL | LL PROVIDE AN  | ALTERNATE FO | or Equal E           | QUIPMEN   | NT UTILIZING R4 | 54B.   |         | EF-23  | TRADES LAB                | GREENHECK    | SQ-120                  | INLINE        | 520        | 0.25    | DIRECT          | 753         | 500          | 0.13       | 115 V-1Ø         | A,B,F,G             |          |
|                            |                                                                              |                 |               |                |                 |                     |          |                |              |                      |           |                 |        |         | EF-24  | WOOD WORKING              | GREENHECK    | SQ-120                  | INLINE        | 520        | 0.25    | DIRECT          | 753         | 0            | 0.13       | 115 V-1Ø         | A,C,F,G,K           |          |
|                            |                                                                              |                 |               |                |                 |                     |          |                |              |                      |           |                 |        |         | EF-25  | WELDING                   | GREENHECK    | USF-15-B7               | UTILITY SET   | 3,200      | 0.50    | DIRECT          | 1641        | 0            | 1.50       | 460 V-3Ø         | A,C,K,N,U           |          |
|                            |                                                                              |                 |               | рист           |                 |                     |          |                |              |                      |           |                 |        |         | EF-26  | 1718 BIOLOGY              | GREENHECK    | SQ-120                  |               | 1,310      | 0.50    | DIRECT          | 1629        | 1127         | 0.50       | 115 V-1Ø         | A,B,F,G             |          |
|                            |                                                                              |                 |               | DUCI           | LESS AN         |                     |          |                |              |                      |           |                 |        |         | EF-27  | 1716B & 2230B PREP ROOM   | GREENHECK    | G-080-D                 | DOWNBLAST     | 490        | 0.50    | DIRECT          | 1426        | 500          | 0.25       | 115 V-1Ø         | A,B,D,E             |          |
|                            |                                                                              |                 |               | DESIGN         | TOTAL           |                     | UN       | ЛТ             |              | INTE                 | RLOCK     |                 |        |         | EF-28  |                           | GREENHECK    | USF-04-B7               |               | 700        | 0.50    | DIRECT          | 1/02        | 0            | 0.25       | 460 V-1Ø         |                     |          |
| SYM                        | IBOL MANUFACTU                                                               | JRER            | MODEL NO.     | AIRFLOW        | CAPACITY        | EAT(db) EAT(wb      | o) WEI   | IGHT MCA       | VOLT         | РН                   | ID        | R               | EMARKS | 5       | EF-29  |                           | GREENHECK    | SQ-120                  |               | 1,650      | 0.50    | DIRECT          | 1583        | <br>         | 0.50       | 115 V-1Ø         | A,B,F,G             |          |
| DS                         | S-1 Mitsubishi El                                                            | ectric          | РКА-А24КА7    | 775 CFM        | 24,000 Btu/h    | 90.0 °F 72.0 °F     | F 46     | 5 lb 1.0 A     | 208 V        | 1 OE                 | DU-1      |                 |        |         |        |                           |              | G-080-D                 |               | 200        | 1.00    |                 | 1001        | 1127         | 0.25       | 115 V-1Ø         |                     | +        |
| DS                         | S-2 Mitsubishi El                                                            | ectric          | PKA-A18LA     | 455 CFM        | 18,000 Btu/h    | 90.0 °F 72.0 °F     | F 28     | 3 lb 1.0 A     | 208 V        | 1 OD                 | DU-2      |                 |        |         | EF-51  |                           | CREENHECK    | G 120 A                 |               | 940        | 1.00    | DIRECT          | 1/11        | 500          | 0.50       | 115 V 10         |                     |          |
| DS                         | S-3 Mitsubishi El                                                            | ectric          | PKA-A18LA     | 455 CFM        | 18,000 Btu/h    | 90.0 °F 72.0 °F     | F 28     | 3 lb 1.0 A     | 208 V        | 1 OC                 | DU-3      |                 |        |         | FE_22  |                           | GREENHECK    | G-120-A                 |               | 840<br>840 | 1.00    |                 | 1/11        | 500          | 0.50       | 115 V_10         |                     | +        |
| DS                         | S-4 Mitsubishi El                                                            | ectric          | PKA-A18LA     | 455 CFM        | 18,000 Btu/h    | 90.0 °F 72.0 °F     | F 28     | 3 lb 1.0 A     | 208 V        | 1 OD                 | DU-4      |                 |        |         | EF-33  | KILN                      | GREENHECK    | SP_R150                 |               | 150        | 0.50    | DIRECT          | 1411        | 128          | 0.00       | 115 V-10         |                     |          |
| DUC                        | TLESS A/C UNIT SCHEDUL                                                       | <u>E NOTES:</u> |               |                |                 |                     |          |                |              |                      |           |                 |        |         | EF-34  |                           | GREENHECK    | G_000_A                 |               | 890        | 0.50    | DIRECT          | 1547        | 500          | 0.00       | 115 V-10         |                     | -        |
| 1                          | . PROVIDE WITH FACTO                                                         | ORY THERMO      | OSTAT AND CO  | ONDENSATE PU   | MP.             |                     |          |                |              |                      |           |                 |        |         | EF-36  |                           | GREENHECK    | SO-120                  |               | 1 310      | 0.50    | DIRECT          | 1629        | 1130         | 0.25       | 115 V-1Ø         | A, D, D, L          |          |
| 2                          | . INSTALL PER MANUFA                                                         | ACTURER'S R     | RECOMMENDA    | TIONS.         |                 |                     |          |                |              |                      |           |                 |        |         | EF-30  |                           | GREENHECK    | G_000_A                 |               | 900        | 0.50    | DIRECT          | 1558        | 500          | 0.30       | 115 V-10         |                     | -        |
| 3                          | . SIZE AND INSTALL RE                                                        | RIGERANT I      | PIPING PER M  | ANUFACTURER'   | S RECOMMENDA    | TIONS.              |          |                |              |                      |           |                 |        |         | EF-38  |                           | GREENHECK    | G-099-A                 |               | 960        | 0.50    | DIRECT          | 1611        | 500          | 0.25       | 115 V-1Ø         |                     | -        |
| 2                          | . INDOOR UNITS ARE P                                                         | OWERED BY       | THE CONDEN    | ISING UNITS.   |                 |                     |          |                |              |                      |           |                 |        |         | LI-50  |                           | GREENHECK    | G-033-A                 | DOWINDLAST    | 900        | 0.50    | DIRECT          | 1011        | 500          | 0.25       | 115 V-160        | A, D, D, L          |          |
|                            | . IN EVERY ROOM SERV                                                         |                 | NI-SPLIT INDO |                |                 | IRE SENSOR INTEGR   |          | IO THE BAS WIT |              | ERATURE A            |           | :T AT 80F (ADJ) |        |         |        | FAN SCHEDULE ACCESSORIES: |              |                         |               |            | EX      | (HAUST FAN SCHE | DULE CONTR  | ROLS:        |            |                  |                     |          |
|                            | <b></b>                                                                      |                 |               |                |                 |                     |          |                |              |                      |           |                 |        |         |        | SCONNECT SWITCH           | М            | . 2" WASHABLE           | ALUMINUM FILT | ERS        |         | 1. WALL MC      | DUNTED THEF | RMOSTAT (RE  | VERSE ACT  | NG, SET FOR 80°) |                     |          |
|                            |                                                                              |                 |               |                | Ц/              |                     | СПЕ      |                |              |                      |           |                 |        |         | B. GR  |                           | N.           | MOTORSIDE F             | AN GUARD      |            |         | 2. INTERLOC     |             | om light swi | TCH (FAN S | SHALL OPERATE WH | EN LIGHT IS ON IF # | ANY ROO  |
|                            |                                                                              |                 |               |                | 11              |                     |          | JULL           |              |                      |           |                 |        |         |        |                           | 0.           | EXHAUST GRI             | LLE           |            |         | SERVED B        | SY FAN)     |              |            |                  |                     |          |
|                            |                                                                              |                 |               |                |                 |                     | E        | LECTRICAL DAT  | A            |                      |           |                 |        |         | D. PR  | LEFAB, ROUF CURB          | P.<br>Q.     | U.L. 762<br>VENTED ROOI | CURB EXTENSIO | N          |         | 4. WALL MC      | DUNTED ON/O | HROOM PUS    | H BUTTON   | SWITCH/STARTER W | /ITH IDENTIFICATIC  | N LABEL  |

|                              | DUCT                       | LESS A          | A/C CC      | <b>NDE</b>  | <b>NSING UN</b>     | IT SCHED                                 | ULE       |              |            |           |                |            |                |           |      |                                         |                                                                    |              |                            | EXH           | AUST  | FAN S   | SCHEDU                                      | _E                        |                                            |           |                                        |              |
|------------------------------|----------------------------|-----------------|-------------|-------------|---------------------|------------------------------------------|-----------|--------------|------------|-----------|----------------|------------|----------------|-----------|------|-----------------------------------------|--------------------------------------------------------------------|--------------|----------------------------|---------------|-------|---------|---------------------------------------------|---------------------------|--------------------------------------------|-----------|----------------------------------------|--------------|
|                              |                            | REFRIC          | GERANT      | LOW         |                     |                                          |           | SOUND        |            |           |                |            |                |           |      |                                         |                                                                    |              |                            |               |       | APPROX. |                                             |                           |                                            | ELECTRICA | L DATA                                 |              |
|                              | TVDE                       | TYDE            | CHARCE      |             | SUMMER AMBIENT      | WINTER AMBIENT                           | EED       | PRESSURE     | WEICHT     | MCA       | MOCD           | VOLT       | пц             | DEM       |      | SYMBOL                                  | LOCATION                                                           | MANUFACTURER | MODEL NO.                  | ТҮРЕ          | CFM   | ESP     | DRIVE TYPE                                  | FAN RPM                   | WATTS                                      | H.P.      | VOLTAGE-PHASEØ                         | ACCESSO      |
| ton                          |                            | R/10A           | 7 lb        |             | 03.3 °F             | 22.5 °F                                  | 12 2      |              | 151 lb     | 19 0 A    | 26.0.4         | 208 V      | <u>РП</u><br>1 | KEIV      | AKKS | EF-1                                    | ADMIN OFFICE                                                       | GREENHECK    | CSP-A250                   | CEILING       | 75    | 0.50    | DIRECT                                      | 770                       | 25                                         | 0.00      | 115 V-1Ø                               | A,B,F,G      |
| ton                          |                            | R410A           | 4 lb        | Ves         | 93.3 F              | 22.5 °F                                  | 10.7      | 47           | 99 lb      | 11.0 A    | 20.0 A         | 208 V      | 1              |           |      | EF-2                                    |                                                                    | GREENHECK    | CSP-A250                   | CEILING       | 75    | 0.50    | DIRECT                                      | 770                       | 25                                         | 0.00      | 115 V-1Ø                               | A,B,F,C      |
| ton                          |                            | R410A           | 4 lb        | Yes         | 93.3 °F             | 22.5 °F                                  | 10.7      | 44           | 99 lb      | 11.0 A    | 28.0 A         | 208 V      | 1              |           |      | EF-3                                    |                                                                    | GREENHECK    | CSP-A250                   | CEILING       | 75    | 0.50    | DIRECT                                      | 770                       | 25                                         | 0.00      | 115 V-1Ø                               | A,B,F,C      |
| ton                          | COOLING ONLY               | R410A           | 4 lb        | Yes         | 93.3 °F             | 22.5 °F                                  | 10.7      | 44           | 99 lb      | 11.0 A    | 28.0 A         | 208 V      | 1              |           |      |                                         |                                                                    | GREENHECK    | CSP-A250                   |               | /5    | 0.50    | DIRECT                                      | 15.40                     |                                            | 0.00      | 115 V-1Ø                               | A,B,F,C      |
|                              |                            |                 |             |             |                     |                                          |           |              |            |           |                |            |                |           |      | EF-5                                    | HS GIRLS V LOCKER 1202                                             | GREENHECK    | G-095-D                    |               | 400   | 0.50    | DIRECT                                      | 1540                      | 1000                                       | 0.13      | 115 V-1Ø                               | A,B,D        |
|                              |                            |                 |             |             |                     |                                          |           |              |            |           |                |            |                |           |      |                                         | ELECTRICAL ROOM                                                    | GREENHECK    | G-095-D                    |               | 400   | 0.50    | DIRECT                                      | 1040                      | 1000                                       | 0.13      | 115 V-10                               |              |
|                              |                            |                 |             |             |                     |                                          |           |              |            |           |                |            |                |           |      |                                         |                                                                    |              | G-120-A                    |               | 1,420 | 0.50    | DIRECT                                      | 1220                      |                                            | 0.50      | 115 V-10                               |              |
| OMPLIANT                     |                            |                 |             |             |                     |                                          |           |              |            |           |                |            |                |           |      | EF-0                                    |                                                                    |              | G-080-D                    |               | 180   | 0.50    | DIRECT                                      | 1220                      | 500                                        | 0.25      | 115 V-10                               |              |
| PROVIDE N                    |                            |                 | ARANCES AR  |             | S.                  |                                          |           |              |            |           |                |            |                |           |      | EF-3                                    |                                                                    | GREENHECK    | G-095-D                    |               | 400   | 0.50    | DIRECT                                      | 1530                      | 1000                                       | 0.23      | 115 V-1Ø                               |              |
|                              |                            | AND SYSTEMS     | , CORP. (OR | EQUAL) ANL  | D PROVIDE MANUFAG   | TURER'S RECOMME                          | NDED CLEA | RANCES AROU  | JND UNITS. |           |                |            |                |           |      | EF-10<br>FE-11                          | HS BOYS LOCKER BOOM 1209                                           | GREENHECK    | G-095-D                    |               | 400   | 0.50    | DIRECT                                      | 1540                      | 1000                                       | 0.13      | 115 V-10                               |              |
|                              | W AWDIENT CONTROLS.        |                 |             |             |                     |                                          |           |              |            |           |                |            |                |           |      | EF-12                                   | INDR 1311                                                          | GREENHECK    | SP-B150                    | CELLING       | 125   | 0.50    | DIRECT                                      | 911                       | 128                                        | 0.00      | 115 V-1Ø                               |              |
| AL EQUIVAL                   | ENT LENGTH BETWEEN 50      | '-0" AND 175'   | -0".        |             |                     |                                          |           |              |            |           |                |            |                |           |      | EF-13                                   | BR 1205B                                                           | GREENHECK    | SP-B150                    | CEILING       | 125   | 0.50    | DIRECT                                      | 911                       | 128                                        | 0.00      | 115 V-1Ø                               |              |
|                              |                            |                 |             |             |                     |                                          |           |              |            |           |                |            |                |           |      | EF-14                                   | BR 1207B                                                           | GREENHECK    | SP-B150                    | CEILING       | 125   | 0.50    | DIRECT                                      | 911                       | 120                                        | 0.00      | 115 V-1Ø                               |              |
|                              |                            |                 |             |             |                     |                                          |           |              |            |           |                |            |                |           |      | EF-15                                   | CUST 1206                                                          | GREENHECK    | SP-B150                    | CEILING       | 125   | 0.50    | DIRECT                                      | 911                       | 128                                        | 0.00      | 115 V-1Ø                               |              |
| RELAY (NO                    | OT REQUIRED FOR SCROLL     | COMPRESSO       | RS OR THRE  | E PHASE UN  | ITS).               |                                          |           |              |            |           |                |            |                |           |      | EF-16                                   |                                                                    | GREENHECK    | SO-90                      | INLINE        | 275   | 0.50    | DIRECT                                      | 1643                      | 0                                          | 0.00      | 115 V-1Ø                               |              |
| FS).                         |                            |                 |             |             |                     |                                          |           |              |            |           |                |            |                |           |      | EF-17                                   | MECH PENTHOUSE M2300                                               | GREENHECK    | SQ-90                      | INLINE        | 275   | 0.50    | DIRECT                                      | 1643                      | 0                                          | 0.10      | 115 V-1Ø                               | ABF          |
|                              |                            |                 |             |             |                     |                                          |           |              |            |           | 17             |            |                |           |      | EF-18                                   | KITCHEN                                                            | GREENHECK    | CSP-A250                   | CEILING       | 75    | 0.50    | DIRECT                                      | 770                       | 25                                         | 0.00      | 115 V-1Ø                               | ABE(         |
| LIQUID LINI<br>2 LINIT (50'. | SOLENOID WITHIN 2"-0" (    |                 |             |             |                     |                                          |           |              |            |           | II.<br>DIINIIT |            |                |           |      | EF-19                                   | KITCHEN                                                            | GREENHECK    | CSP-A250                   | CEILING       | 75    | 0.50    | DIRECT                                      | 770                       | 25                                         | 0.00      | 115 V-1Ø                               |              |
|                              |                            | F THF TRAP M    | UST BE GRE  | ATFR THAN   |                     | NDOOR COIL                               |           |              | NG TOWARD  |           | CONT.          |            |                |           |      | EF-20                                   | KITCHEN                                                            | GREENHECK    | CSP-A250                   | CEILING       | 75    | 0.50    | DIRECT                                      | 770                       | 25                                         | 0.00      | 115 V-1Ø                               | A.B.F.(      |
| UNIT (150'                   | -0" MAX); A LIQUID LINE (I | BI-FLOW) SOL    | ENOID MUS   | T BE INSTAL | LED WITHIN 2'-0" OF | OUTDOOR UNIT.                            |           |              |            |           |                |            |                |           |      | EF-21                                   | DISHWASHING                                                        | GREENHECK    | G-080-D                    | DOWNBLAST     | 180   | 0.50    | DIRECT                                      | 1330                      | 500                                        | 0.25      | 115 V-1Ø                               | A.B.D        |
|                              |                            |                 |             |             |                     |                                          |           |              |            |           |                |            |                |           |      | EF-22                                   | PUMP ROOM                                                          | GREENHECK    | G-120-A                    | DOWNBLAST     | 1.440 | 0.50    | DIRECT                                      | 1420                      | 1000                                       | 0.50      | 115 V-1Ø                               | A.C.D        |
|                              |                            |                 |             |             | ATE WHICH REERIGE   | EFRIGERAINT R4546<br>RANT IS RASE RID AI |           |              |            | OR FOLIAL |                |            | NG R454        | 1NG<br>1R |      | EF-23                                   | TRADES LAB                                                         | GREENHECK    | SO-120                     | INLINE        | 520   | 0.25    | DIRECT                                      | 753                       | 500                                        | 0.13      | 115 V-1Ø                               | A.B.F        |
|                              | ONTERCENTET. ALL LQ        |                 |             |             |                     |                                          |           |              |            |           |                |            |                | ŦD.       |      | EF-24                                   | WOOD WORKING                                                       | GREENHECK    | SQ-120                     | INLINE        | 520   | 0.25    | DIRECT                                      | 753                       | 0                                          | 0.13      | 115 V-1Ø                               | A.C.F.(      |
|                              |                            |                 |             |             |                     |                                          |           |              |            |           |                |            |                |           |      | EF-25                                   | WELDING                                                            | GREENHECK    | USF-15-B7                  |               | 3.200 | 0.50    | DIRECT                                      | 1641                      | 0                                          | 1.50      | 460 V-3Ø                               | A.C.K.I      |
|                              |                            |                 |             |             |                     |                                          |           |              |            |           |                |            |                |           |      | EF-26                                   | 1718 BIOLOGY                                                       | GREENHECK    | SO-120                     | INLINE        | 1.310 | 0.50    | DIRECT                                      | 1629                      | 1127                                       | 0.50      | 115 V-1Ø                               | A.B.F.       |
|                              |                            |                 |             | DUC         | TLESS A/C           | INDOOR                                   |           | SCHE         | DULE       |           |                |            |                |           |      | EF-27                                   | 1716B & 2230B PREP ROOM                                            | GREENHECK    | G-080-D                    | DOWNBLAST     | 490   | 0.50    | DIRECT                                      | 1426                      | 500                                        | 0.25      | 115 V-1Ø                               | A.B.D        |
|                              |                            |                 |             |             |                     |                                          |           |              |            |           |                |            |                |           |      | EF-28                                   | FUME HOOD EXHAUST                                                  | GREENHECK    | USF-04-B7                  | UTILITY SET   | 700   | 0.50    | DIRECT                                      | 1702                      | 0                                          | 0.25      | 460 V-1Ø                               | A.C.K.I      |
|                              |                            |                 |             | DESIGN      | N TOTAL             |                                          | UNIT      | -            |            |           |                |            |                |           |      | EF-29                                   | 1710 CHEMISTRY                                                     | GREENHECK    | SQ-120                     | INLINE        | 1.650 | 0.50    | DIRECT                                      | 1583                      | 1127                                       | 0.50      | 115 V-1Ø                               | A.B.F.       |
| SYN                          | ABOL MANUFACTU             |                 | MODEL NO.   |             |                     | EAI(db) EAI(wb)                          | WEIGH     |              | VOLI       |           |                |            | REIV           | ARKS      |      | EF-30                                   | 1708B PREP ROOM                                                    | GREENHECK    | G-080-D                    | DOWNBLAST     | 260   | 1.00    | DIRECT                                      | 1651                      | 500                                        | 0.25      | 115 V-1Ø                               | A,B,D        |
|                              | SS-1 Mitsubishi Ele        | ectric F        |             | 775 CFN     | VI 24,000 Btu/h     | 90.0 °F 72.0 °F                          | 46 lb     | 1.0 A        | 208 V      |           | DU-1           |            |                |           |      | EF-31                                   | 1714 PHYSICAL SCIENCE                                              | GREENHECK    | SQ-120                     | INLINE        | 1,260 | 0.50    | DIRECT                                      | 1583                      | 1127                                       | 0.50      | 115 V-1Ø                               | A,B,F        |
|                              | SS-2 Mitsubishi Ele        | ectric          | PKA-AI8LA   | 455 CFN     | VI 18,000 Btu/n     | 90.0 °F 72.0 °F                          | 28 10     | 1.0 A        | 208 V      |           |                |            |                |           |      | EF-32                                   | 1804 HS CTEC LAB 3D ART                                            | GREENHECK    | G-120-A                    | DOWNBLAST     | 840   | 1.00    | DIRECT                                      | 1411                      | 500                                        | 0.50      | 115 V-1Ø                               | A,B,D        |
|                              | SS-3 Mitsubishi Ele        | ectric          | PKA-AI8LA   | 455 CFN     | VI 18,000 Btu/h     | 90.0 °F 72.0 °F                          | 28 10     | 1.0 A        | 208 V      |           |                |            |                |           |      | EF-33                                   | 1802 HS CTEC LAB 2D ART                                            | GREENHECK    | G-120-A                    | DOWNBLAST     | 840   | 1.00    | DIRECT                                      | 1411                      | 500                                        | 0.50      | 115 V-1Ø                               | A,B,D        |
|                              | 55-4 Mitsubishi Ele        | ectric          | PKA-AI8LA   | 455 CFN     | VI 18,000 Btu/h     | 90.0°F 72.0°F                            | 28 10     | 1.0 A        | 208 V      |           | DU-4           |            |                |           |      | EF-34                                   | KILN                                                               | GREENHECK    | SP-B150                    | CEILING       | 150   | 0.50    | DIRECT                                      | 1050                      | 128                                        | 0.00      | 115 V-1Ø                               | A,B,F,C      |
|                              | TLESS A/C UNIT SCHEDULI    | <u>E NOTES:</u> |             |             |                     |                                          |           |              |            |           |                |            |                |           |      | EF-35                                   | 2214 6TH SCIENCE                                                   | GREENHECK    | G-099-A                    | DOWNBLAST     | 890   | 0.50    | DIRECT                                      | 1547                      | 500                                        | 0.25      | 115 V-1Ø                               | A,B,D        |
|                              | I. PROVIDE WITH FACTO      | RY THERMOS      | STAT AND CC | NDENSATE    | PUMP.               |                                          |           |              |            |           |                |            |                |           |      | EF-36                                   | 1716 PHYSICS                                                       | GREENHECK    | SQ-120                     | INLINE        | 1,310 | 0.50    | DIRECT                                      | 1629                      | 1130                                       | 0.50      | 115 V-1Ø                               | A,B,F        |
|                              | 2. INSTALL PER MANUFA      | CIURER'S REC    |             | HONS.       |                     |                                          |           |              |            |           |                |            |                |           |      | EF-37                                   | 2210 7TH SCIENCE                                                   | GREENHECK    | G-099-A                    | DOWNBLAST     | 900   | 0.50    | DIRECT                                      | 1558                      | 500                                        | 0.25      | 115 V-1Ø                               | A,B,D        |
|                              |                            |                 | HING PER MI |             | ER'S RECOMMENDA     | IONS.                                    |           |              |            |           |                |            |                |           |      | EF-38                                   | 2230 MS SCIENCE                                                    | GREENHECK    | G-099-A                    | DOWNBLAST     | 960   | 0.50    | DIRECT                                      | 1611                      | 500                                        | 0.25      | 115 V-1Ø                               | A,B,D        |
|                              | 5. IN EVERY ROOM SERVI     | ED BY A MINI    | -SPLIT INDO | OR UNIT PR  | OVIDE A TEMPERATU   |                                          |           | THE BAS WITH | HIGH TEMP  | PERATURE  | ALARM SE       | T AT 80F ( | ADJ)           |           |      | <u>EXHAUST F</u><br>A. DISCO<br>B. GRAN | AN SCHEDULE ACCESSORIES:<br>DNNECT SWITCH<br>'ITY BACKDRAFT DAMPER | M.<br>N.     | 2" WASHABLE<br>MOTORSIDE F | ALUMINUM FILT | ERS   | EXI     | HAUST FAN SCHE<br>1. WALL MC<br>2. INTERLOC | DULE CONTR<br>OUNTED THEI | <u>'OLS:</u><br>RMOSTAT (RE<br>DM LIGHT SW | VERSE AC  | TING, SET FOR 80°)<br>SHALL OPERATE WH | IEN LIGHT IS |
|                              |                            |                 |             |             | H)                  | ils fan S                                | CHED      | ULE          |            |           |                |            |                |           |      | C. MOT                                  | ORIZED BACKDRAFT DAMPER                                            | О.           | EXHAUST GRI                | LLE           |       |         | SERVED B                                    | Y FAN)                    |                                            |           |                                        |              |
|                              |                            |                 |             |             |                     |                                          | FLFC      |              |            |           |                |            |                |           |      | D. PREF.                                | AB, ROOF CURB                                                      | Ρ.           | U.L. 762                   |               |       |         | 3. WALL MC                                  | UNTED ON/                 | OFF SWITCH '                               | WITH IDEN | TIFICATION LABEL                       |              |

|        |                |       | HVLS   | S FAN S | CHE  | DULE           |              |              |
|--------|----------------|-------|--------|---------|------|----------------|--------------|--------------|
|        |                |       |        |         | EL   | ECTRICAL DATA  |              |              |
| SYMBOL | LOCATION       | CFM   | DRIVE  | MAX RPM | H.P. | VOLTAGE-PHASEØ | MANUFACTURER | MODEL        |
| HVLS-1 | LOBBY          | 71900 | DIRECT | 125     | 0.75 | 460 V-3Ø       | GREENHECK    | DS-6-12-70HV |
| HVLS-2 | DINING         | 71900 | DIRECT | 125     | 0.75 | 460 V-3Ø       | GREENHECK    | DS-6-12-70HV |
| HVLS-3 | CLASSROOM WING | 71900 | DIRECT | 125     | 0.75 | 460 V-3Ø       | GREENHECK    | DS-6-12-70HV |
| HVLS-4 | CLASSROOM WING | 71900 | DIRECT | 125     | 0.75 | 460 V-3Ø       | GREENHECK    | DS-6-12-70HV |

NOTES:

ALL FANS SHALL BE U.L. LISTED AND LABELED AND SHALL BE AMCA CERTIFIED FOR SOUND AND AIR FLOW. ALL FANS SHALL BE SUPPLIED BY ONE MANUFACTURER UNLESS NOTED OTHERWISE.

MECHANICAL CONTRACTOR SHALL PROVIDE MAGNETIC STARTER WITH AUXILIARY CONTACTS AS REQUIRED.

PROVIDE WITH: A DIGITAL WALL CONTROLLER WITH FAULT CODE ACCESS AND DISPLAY CODE LOCK-OUT, BAS MONITORING/INTEGRATION, AVD FUSED DISCONNECT, INDUSTRIAL GRADE GEAR BOX, AIRFOIL RETAINERS, HUB CLIPS, SAFETY CABLES, GRADE 8 BOLTS, FIRE DELAY, 12-YEAR LIMITED WARRANTY.

COORDINATE SUPPORT REQUIREMENTS WITH MANUFACTURER. . FANS SHALL SHUT-DOWN UPON SIGNAL FROM SPRINKLER MONITORING SYSTEM INDICATING WATER FLOW IN THE SPRINKLER SYSTEM. COORDINAT

CONNECTION(S) WITH FP/FA CONTRACTORS. SEE 12/M503 FOR FP INSTALLATION COORDINATION DETAIL

THE DCV (EMS) DEMAND VENTILATION SYSTEM IS DESIGNED TO AUTOMATICALLY REDUCE EXHAUST AND SUPPLY AIRFLOW QUANTITIES, WHILE ENSURING HOOD PERFORMANCE IS MAINTAINED. THE EMS USES VARIABLE FREQUENCY DRIVES (VFD) AND TEMPERATURE SENSORS IN THE EXHAUST DUCTS TO MODULATE THE FANS SPEED DURING COOKING OPERATION AND MAXIMIZE ENERGY SAVINGS. THE EMS LCD SCREEN INTERFACE PROVIDES FAN(S) CONTROL. SYSTEM

CONTROLS WILL BE LISTED BY ETL TO UL STANDARD 508A. THE SYSTEM INCLUDES A LCD SCREEN INTERFACE FOR FAN(S) AND HOOD LIGHTS CONTROL, WASH CONTROL (IF APPLICABLE), GAS VALVE RESET, PROGRAMMABLE SCHEDULE, MAX AIR OVERRIDE FUNCTION, PREPARATION TIME MODE, COOL DOWN MODE, AND DIAGNOSTICS INCLUDING VFD STATUS. THE LCD SCREEN SHOWS DESCRIPTIVE PLAIN TEXT EXPLAINING THE FUNCTIONS OR VALUES. THE LCD SCREEN INTERFACE WILL BE INSTALLED ON THE FACE OF THE HOOD, ON THE FACE OF THE UTILITY CABINET OR ON THE FACE OF A WALL MOUNTED CONTROL ENCLOSURE. CONTROL ENCLOSURE WILL BE NEMA 1 RATED AND LISTED FOR INSTALLATION INSIDE OF THE EXHAUST HOOD UTILITY CABINET. CONTROL ENCLOSURE MAY BE CONSTRUCTED OF STAINLESS STEEL OR PAINTED STEEL. THE SMART CONTROLLER WILL CONSTANTLY MONITOR THE EXHAUST AIR TEMPERATURE THROUGH THE RISER MOUNTED TEMPERATURE SENSOR AND MODULATE THE FAN SPEEDS ACCORDINGLY. A ROOM TEMPERATURE SENSOR WILL ALSO BE PROVIDED FOR FIELD INSTALLATION IN THE KITCHEN SPACE IN ORDER TO START THE FAN(S) BASED ON THE TEMPERATURE DIFFERENTIAL BETWEEN THE ROOM AND THE EXHAUST AIR IN THE DUCT RATHER THAN FIXED SET-POINTS. A PREPARATION TIME MODE IS AVAILABLE FOR MORNING OPERATION: DEDICATED MAKE-UP AIR WILL BE LOCKED OUT ONLY ALLOWING THE USE OF TRANSFER AIR DURING THIS MODE. EXHAUST FAN(S) WILL RUN AT LOW CFM WHILE MAINTAINING A BALANCED KITCHEN PRESSURE. A COOL DOWN MODE IS DESIGNED FOR EQUIPMENT COOL-DOWN PERIOD AT THE END OF THE DAILY COOKING OPERATIONS: SIMILARLY TO PREPARATION TIME MODE, DEDICATED MAKE-UP AIR WILL BE LOCKED OUT ONLY ALLOWING THE USE OF TRANSFER AIR DURING THIS MODE. EXHAUST FAN(S) WILL RUN AT LOW CFM WHILE MAINTAINING A BALANCED KITCHEN PRESSURE. FAN MAXIMUM/ MINIMUM SPEEDS WILL BE ADJUSTABLE FOR PROPER KITCHEN BALANCE. FAN DIRECTION CHANGE IS ALSO AVAILABLE FROM THE SMART CONTROLLER CONFIGURATION MENU WITHOUT NEED FOR REWIRING. DUCT TEMPERATURE SENSOR(S) WILL BE MOUNTED IN THE EXHAUST HOODRISER(S). TEMPERATURE PROBE WILL BE CONSTRUCTED OF STAINLESS STEEL. SYSTEM WILL BE FACTORY PRE-SET TO MODULATE FAN SPEED WITHIN A RANGE OF 45°F FOR 600°F AND 700°F COOKING APPLICATIONS AND A RANGE OF 5°F FOR 400°F COOKING APPLICATIONS. SETPOINTS ARE FULLY ADJUSTABLE THROUGH THE TOUCH SCREEN INTERFACE BASED ON APPLICATION NEEDS. THE MAX AIR OVERRIDE WILL HAVE AN ADJUSTABLE TIMEOUT VALUE. THE PANELS INCLUDE COLOR CODED WIRINGWITH AS-BUILT WIRING DIAGRAMS AND SPARE TERMINALS CONTROLLED BY THE FIRE SYSTEM MICRO SWITCH. THE PANEL IS FACTORY PRE-WIRED TO SHUT SUPPLY FANS DOWN IN A FIRE CONDITION. OPTIONS TO TURN ON THE EXHAUST FANS OR TURN OFF THE HOOD LIGHTS IN A FIRE CONDITION WILL BE CONFIGURABLE THROUGH THE SMART CONTROLLER, BUT ONLY THROUGH A PASSWORD PROTECTED MENU TO PREVENT ANY CHANGES AFTER A FIRE INSPECTION HAS BEEN PERFORMED.

LOUVER SCHEDULE DIMENSION DESIGN FREE FREE AREA SYMBOL MANUFACTURER MODEL NO. AIRFLOW AREA VELOCITY PD WIDTH HEIC <varies> 2.3 SF <varies> 0.02 in-wg RUSKIN EME220DD L-1 44" RUSKIN EME220DD 2.3 SF 0.19 in-wg 44" L-2 <varies> <varies> 3200 CFM 4.0 SF 808 FPM 0.02 in-wg RUSKIN L-3 EME220DD 38" 0 FPM 0.19 in-wg L-4 RUSKIN EME220DD 1 CFM 3.7 SF 48" RUSKIN L-5 EME220DD 1600 CFM 2.0 SF 800 FPM 0.02 in-wg 36" RUSKIN 330 CFM 0.9 SF 371 FPM L-6 EME220DD 0.02 in-wg 16" L-7 RUSKIN <varies> | 1.4 SF | 0.02 in-wg EME220DD 20" <varies> 0.02 in-wg L-8 RUSKIN EME220DD 2350 CFM 4.0 SF 588 FPM 72' EME220DD 3200 CFM 5.6 SF 576 FPM 0.02 in-wg 40" RUSKIN L-9 0.19 in-wg L-10 RUSKIN EME220DD 1 CFM 0.5 SF 2 FPM 12" L-11 RUSKIN 
 EME220DD
 0 CFM
 1.4 SF
 0 FPM
 0.19 in-wg
 20"
 EME220DD 1 CFM 1.8 SF 1 FPM 0.19 in-wg 28" L-12 RUSKIN L-13 RUSKIN EME220DD 2100 CFM 2.7 SF 775 FPM 0.19 in-wg 30" 26 RUSKIN EME220DD 1 CFM 2.8 SF 0 FPM 0.19 in-wg 40" 20" L-14

LOUVER SCHEDULE NOTES: 1. PROVIDE BAKED ENAMEL FINISH, COLOR BY ARCHITECT.

. PROVIDE WITH BIRDSCREEN.

3. PROVIDE WITH DAMPER AS NOTED IN SCHEDULE

4. INSTALL WITH 18" DEEP INSULATED PLENUM.

A. COORDINATE LOUVER WIDTH DIMENSION WITH DOOR FRAME SIZING TO MATCH

B. COORDINATE FINAL LOUVER DIMENSIONS WITH WINDOW **GLAZING FRAMING** 

5. PROVIDE FRAME TYPE REQUIRED FOR MOUNTING LOCATION.

# FAN FILTER UNIT SCHEDULE

FF-1: ACS MODEL M-30 AIR CLEANER; 3,000 CFM, 3/4-HP 277V-1PH FAN MOTOR, 255 LBS OPERATING WEIGHT. ACCESSORIES: PRESSURE GAUGE, PROVIDE EYE BOLTS AND VIBRATION ISOLATION FOR CEILING MOUNTED INSTALLATION, PROVIDE SILENCER

- E. BIRDSCREEN
- F. ACOUSTICAL LINING
- G. HANGING BRACKETS WITH VIBRATION ISOLATION
- H. WL, WALL LOUVER DISCHARGE
- I. RCC OR GRS ROOF CAP (FLAT ROOF) OR RJ ROOF CAP (PITCHED ROOF)
- . WALL MOUNTING COLLAR K. INLET GAURD

# EXHAUST FAN SCHEDULE NOTES:

1. ALL FANS SHALL BE U.L. LISTED AND LABELED AND SHALL BE AMCA CERTIFIED FOR SOUND AND AIR FLOW. ALL FANS INSTALLED INSIDE, ABOVE, OR ADJACENT TO OCCUPIED SPACES SHALL HAVE A MAXIMUM 9.0 INLET SONE LEVEL.

R. COMBINATION KITCHEN HOOD FAN CURB

S. INTERLOCK WITH FUME HOOD

U. ROOF SUPPORT RAILS

V. VFD

T. PROVIDE DRAIN PLUG ACCESSORY

2. ALL FANS SHALL BE SUPPLIED BY ONE MANUFACTURER UNLESS NOTED OTHERWISE B. MECHANICAL CONTRACTOR SHALL PROVIDE MAGNETIC STARTER WITH AUXILIARY CONTACTS AS REQUIRED.

4. PROVIDE ALL DIRECT DRIVE FANS WITH SPEED CONTROLLERS. 5. BACKDRAFT DAMPER ON ROOF SUPPLY FANS SHALL BE MOTORIZED.

| ΗT | REMARKS             | COMMENTS |
|----|---------------------|----------|
|    | OUTSIDE/MAKE-UP AIR | В        |
|    | EXHAUST             |          |
|    | OUTSIDE/MAKE-UP AIR |          |
|    | EXHAUST             |          |
|    | OUTSIDE/MAKE-UP AIR | Α        |
|    | EXHAUST             |          |

|        | (                       | GRILLES, | REGIS  | TERS AN  |       | IFFL | JSER: | s scł  | HEDULE           |             |                |
|--------|-------------------------|----------|--------|----------|-------|------|-------|--------|------------------|-------------|----------------|
|        |                         |          |        |          |       |      | NECK  |        | INSTALLATION     | OPTIONS     |                |
|        |                         |          |        |          | FACE  |      |       |        |                  | DAMPER      |                |
| SYMBOL | DESCRIPTION             | MANUF.   | MODEL  | MATERIAL | SIZE  | SIZE | WIDTH | HEIGHT | BORDER TYPE      | DESCRIPTION | NOTES          |
| Α      | LOUVERED FACE DIFFUSER  | TITUS    | TDC    | STEEL    | 12x12 | 6    |       |        | TYPE 3 (LAY-IN)  |             | SUPPLY         |
| В      | LOUVERED FACE DIFFUSER  | TITUS    | TDC    | STEEL    | 12x12 | 8    |       |        | TYPE 3 (LAY-IN)  |             | SUPPLY         |
| С      | LOUVERED FACE DIFFUSER  | TITUS    | TDC    | STEEL    | 24x24 | 6    |       |        | TYPE 3 (LAY-IN)  |             | SUPPLY         |
| D      | LOUVERED FACE DIFFUSER  | TITUS    | TDC    | STEEL    | 24x24 | 8    |       |        | TYPE 3 (LAY-IN)  |             | SUPPLY         |
| F      | LOUVERED FACE DIFFUSER  | TITUS    | TDC    | STEEL    | 24x24 | 10   |       |        | TYPE 3 (LAY-IN)  |             | SUPPLY         |
| G      | LOUVERED FACE DIFFUSER  | TITUS    | TDC    | STEEL    | 24x24 | 12   |       |        | TYPE 3 (LAY-IN)  |             | SUPPLY         |
| н      | LOUVERED DBL DFL GRILLE | TITUS    | 300RL  | STEEL    |       |      | 6     | 6      | TYPE 1 (SURFACE) |             | SUPPLY         |
| J      | LOUVERED DBL DFL GRILLE | TITUS    | 300RL  | STEEL    |       |      | 10    | 6      | TYPE 1 (SURFACE) |             | SUPPLY         |
| К      | LOUVERED DBL DFL GRILLE | TITUS    | 300RL  | STEEL    |       |      | 12    | 4      | TYPE 1 (SURFACE) |             | SUPPLY         |
| L      | LOUVERED DBL DFL GRILLE | TITUS    | 300RL  | STEEL    |       |      | 12    | 6      | TYPE 1 (SURFACE) |             | SUPPLY         |
| М      | LOUVERED DBL DFL GRILLE | TITUS    | 300RL  | STEEL    |       |      | 24    | 10     | TYPE 1 (SURFACE) |             | SUPPLY         |
| N      | PERFORATED DIFFUSER     | TITUS    | PAR    | STEEL    | 24x24 | 6    |       |        | TYPE 3 (LAY-IN)  |             | RETURN/EXHAUST |
| Р      | PERFORATED DIFFUSER     | TITUS    | PAR    | STEEL    | 24x24 | 8    |       |        | TYPE 3 (LAY-IN)  |             | RETURN/EXHAUST |
| Q      | PERFORATED DIFFUSER     | TITUS    | PAR    | STEEL    | 24x24 | 10   |       |        | TYPE 3 (LAY-IN)  |             | RETURN/EXHAUST |
| R      | PERFORATED DIFFUSER     | TITUS    | PAR    | STEEL    | 24x24 | 12   |       |        | TYPE 3 (LAY-IN)  |             | RETURN/EXHAUST |
| S      | PERFORATED DIFFUSER     | TITUS    | PAR    | STEEL    | 24x24 | 16   |       |        | TYPE 3 (LAY-IN)  |             | RETURN/EXHAUST |
| Т      | PERFORATED DIFFUSER     | TITUS    | PAR    | STEEL    | 24x24 | 18   |       |        | TYPE 3 (LAY-IN)  |             | RETURN/EXHAUST |
| U      | LOUVERED GRILLE         | TITUS    | 355RL  | STEEL    |       |      | 12    | 12     | TYPE 1 (SURFACE) |             | RETURN         |
| V      | LOUVERED GRILLE         | TITUS    | 355RL  | STEEL    |       |      | 24    | 24     | TYPE 1 (SURFACE) |             | RETURN         |
| W      | LOUVERED GRILLE         | TITUS    | 63FL   | ALUMINUM |       |      | 48    | 48     | TYPE 1 (SURFACE) |             | RETURN         |
| Y      | LOUVERED GRILLE         | TITUS    | 355RL  | STEEL    |       |      | 6     | 6      | TYPE 1 (SURFACE) |             | EXHAUST        |
| Z      | LOUVERED GRILLE         | TITUS    | 355RL  | STEEL    |       |      | 8     | 6      | TYPE 1 (SURFACE) |             | EXHAUST        |
|        |                         | LIN      | IEAR S | SLOT DI  | FFUS  | ER S | SCHE  | DUL    | I                |             |                |

6. CONTROLLED BY BUILDING AUTOMATION SYSTEM

10. INTERLOCK WITH MECHANICAL ROOM 'CO' DETECTOR

7. CONTINUOUS OPERATION

9. INTERLOCK WITH FUME HOOD

|        |                      |        |       |          |             | LINE | AR DIFFUSE | R         | NECK | INSTALLATION     | OPTIONS     |       |
|--------|----------------------|--------|-------|----------|-------------|------|------------|-----------|------|------------------|-------------|-------|
|        |                      |        |       |          | SLOT PLENUM |      |            |           |      |                  |             |       |
|        |                      |        |       |          |             |      | NOM.       |           |      |                  | DAMPER      |       |
| SYMBOL | DESCRIPTION          | MANUF. | MODEL | MATERIAL | WIDTH       | QTY  | LENGTH     | INSULATED | SIZE | BORDER TYPE      | DESCRIPTION | NOTES |
| LS1    | LINEAR SLOT DIFFUSER | TITUS  | FL-10 | ALUMINUM | 1           | 2    | 4' - 0"    | Yes       | 8    | TYPE 1 (SURFACE) |             |       |
| LS2    | LINEAR SLOT DIFFUSER | TITUS  | FL-15 | ALUMINUM | 2           | 1    | 4' - 0"    | Yes       | 8    | TYPE 3 (LAY-IN)  |             |       |
| LS3    | LINEAR SLOT DIFFUSER | TITUS  | FL-15 | ALUMINUM | 2           | 2    | 4' - 0"    | Yes       | 12   | TYPE 3 (LAY-IN)  |             |       |
|        |                      |        |       |          |             |      |            |           |      |                  |             |       |

AIR DISTRIBUTION SCHEDULE NOTES: ALL CEILING AND WALL MOUNTED DEVICES SHALL BE FURNISHED WITH AN ENAMEL BRIGHT WHITE FINISH UNLESS NOTED OTHERWISE.

ALL DEVICES SHALL BE FURNISHED WITH FRAMES SUITABLE FOR THE TYPE OF INSTALLATION REQUIRED. ALL LINEAR DIFFUSERS IN LAY-IN CEILINGS SHALL BE FURNISHED WITH END CAPS. ALL LINEAR DIFFUSERS IN HARD CEILINGS SHALL BE FURNISHED WITH END BORDERS. ALL LINEAR SUPPLY DIFFUSERS SHALL BE PROVIDED WITH INTEGRAL AIRFLOW PATTERN ADJUSTMENT BARS FOR HORIZONTAL/VERTICAL PATTERN

ADJUSTMENT AT EACH SLOT. 4. ALL DOUBLE DEFLECTION SUPPLY GRILLES SHALL HAVE DAMPER BLADES ADJUSTED TO PROVIDE AIRFLOW PATTERN INDICATED BY FLOW ARROWS ON PLANS.

DAMPERS SHALL BE ADJUSTED TO A 30 DEGREE POSITION UNLESS NOTED OTHERWISE ON PLANS. ALL AIR DISTRIBUTION DEVICES LOCATED IN KITCHEN, LOCKER ROOMS, GYM AND TOILETS SHALL BE ALL ALUMINUM CONSTRUCTION.

|  | ITCHEN, LOCKEN NOOM. | JUNE DE ALL ALOIMINO |  |
|--|----------------------|----------------------|--|
|  |                      |                      |  |
|  |                      |                      |  |
|  |                      |                      |  |
|  |                      |                      |  |

| ·      |                    |          |         |                |              |              |           |             |
|--------|--------------------|----------|---------|----------------|--------------|--------------|-----------|-------------|
|        | RC                 | OF MOUNT | ED GRAV | ITY VENTIL     | ATOR SC      | HEDULE       |           |             |
|        |                    |          |         | MAX. THROAT    | MAX. SP DROP |              |           |             |
| SYMBOL | LOCATION           | SERVICE  | CFM     | VELOCITY (FPM) | (IN.)        | MANUFACTURER | MODEL     | ACCESSORIES |
| GRI-1  | HIGH ROOF GYM MEZZ | INTAKE   | 7690    | 1200           | 0.10         | GREENHECK    | FGI-42X42 | A,B,C       |
| GRI-2  | LOCKER ROOF        | INTAKE   | 95      | 2108           | 0.10         | GREENHECK    | GRSI-8    | A,B,C       |
| GRI-3  | LOCKER ROOF        | INTAKE   | 75      | 2108           | 0.10         | GREENHECK    | GRSI-8    | A,B,C       |
| GRI-4  | FIRE PUMP ROOM     | INTAKE   | 1260    | 1121           | 0.10         | GREENHECK    | GRSI-18   | A,B,C       |
| GRI-5  | CLASSROOM ROOF     | INTAKE   | 135     | 2108           | 0.10         | GREENHECK    | GRSI-8    | A,B,C       |
| GRI-6  | CLASSROOM ROOF     | INTAKE   | 135     | 2108           | 0.10         | GREENHECK    | GRSI-8    | A,B,C       |
| GRI-7  | CLASSROOM ROOF     | INTAKE   | 135     | 2108           | 0.10         | GREENHECK    | GRSI-8    | A,B,C       |
| GRI-8  | CLASSROOM ROOF     | INTAKE   | 125     | 2108           | 0.10         | GREENHECK    | GRSI-8    | A,B,C       |
| GRI-9  | CLASSROOM ROOF     | INTAKE   | 125     | 2108           | 0.10         | GREENHECK    | GRSI-8    | A,B,C       |
| GRR-1  | LOCKER ROOF        | RELIEF   | 225     | 608            | 0.10         | GREENHECK    | GRSR-8    | A,B,C       |
| GRR-2  | KITCHEN ROOF       | RELIEF   | 225     | 608            | 0.10         | GREENHECK    | GRSR-8    | A,B,C       |
| GRR-3  | HIGH GYM ROOF MEZZ | RELIEF   | 550     | 671            | 0.10         | GREENHECK    | GRSR-12   | A,B,C       |
| GRR-4  | CLASSROOM ROOF     | RELIEF   | 150     | 405            | 0.10         | GREENHECK    | GRSR-8    | A,B,C       |

NOTES:

1. PROVIDE ALL VENTILATORS WITH FACTORY ROOF CURBS. CURBS AND VENTILATORS SHALL BE INSTALLED LEVEL.

ACCESSORIES:

- A. ROOF CURB
- B. BIRD SCREEN
- C. GRAVITY BACK DRAFT DAMPER D. MOTORIZED DAMPER
- E. WASHABLE ALUMINUM FILTERS
- THIS DRAWING IS AN INSTRUMENT OF SERVICE. THE DRAWING AND THE INFORMATION THEREON IS THE PROPERTY OF OPTIMA ENGINEERING, P.A. IS EXPRESSLY FORBIDDEN. COPYRIGHT © OPTIMA ENGINEERING, P.A. IS EXPRESSLY FORBIDDEN. COPYRIGHT © OPTIMA ENGINEERING, P.A. 2023, ALL RIGHTS RESERVED.

| RIES   | CONTROL TYPE |
|--------|--------------|
| 2      | 2            |
| 2      | 2            |
| 2      | 2            |
| 2      | 2            |
|        | 2            |
|        | 2            |
|        | 1            |
|        | 1            |
|        | 1            |
|        | 2            |
|        | 2            |
| о<br>С | 5            |
| с<br>С | 2            |
| C      | 2            |
| C      | 2            |
|        | 2            |
|        | 2            |
| C      | 2            |
| C      | 2            |
| C      | 2            |
|        | 3            |
|        | 1,10         |
|        | 3            |
| К      | 3            |
| U      | 4            |
|        | 5            |
|        | 7            |
| U      | 9            |
|        | 5            |
|        | 7            |
|        | 5            |
|        | 5            |
|        | 5            |
| c      | 1            |
|        | 5            |
|        | 5            |
|        | 5            |
|        | 5            |
|        |              |
|        |              |

S ON IF ANY ROOM IS

5. WALL MOUNTED TWIST TIMER WITH 0-30 MINUTE RANGE WITH IDENTIFICATION LABEL

8. CONTROLLED BY THE FACP AND FIREMAN'S MANUAL OVER-RIDE CONTROL PANEL IN FIRE COMMAND ROOM. NO MECHANICAL CONTROL POINTS REQUIRED BY M.C. FOR SMOKE CONTROL FANS



OPTIMA# 23-0082R

M-003 Sheet No. 3 of 42

| AirQ Indoor Air Quality Design and Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AirQ Indoor Air Quality Design and Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Pamilico County School WSHP-C Notes 7.5cfm/person<br>Representative Optima Engineering 7.5cfm/person                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Project Pamlico County School WSHP-C Notes 7.5cfm/person<br>Representative Optima Engineering 7.5cfm/person                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ventilated Space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ventilated Space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Building Size     Area     750     ft <sup>3</sup> Ceiling Height 10     ft     Number of Occupants     27     person(s)       Total Volume of Space     7500     ft <sup>3</sup> 277.8     ft <sup>3</sup> /person     Level of Physical Activity     Standing, Desk Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Building Size         Area         750         ft <sup>3</sup> Ceiling Height 10         ft         Number of Occupants         277         person(s)           Total Volume of Space         7500         ft <sup>3</sup> 277.8         ft <sup>3</sup> /person         Level of Physical Activity         Standing, Desk Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total Airflow In, Vs         1000         cfm         37.04         cfm/person         Respiratory Flow         24         cfm/person           Ventilation Airflow, Vo         135         cfm         5         cfm/person         CO2 Generation         0.93         ft³/hr/person                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total Airflow In, Vs         1000         cfm         37.04         cfm/person         Respiratory Flow         24         cfm/person           Ventilation Airflow, Vo         135         cfm         5         cfm/person         CO2 Generation         0.93         ft <sup>3</sup> /hr/person                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Recirculation Airflow, RVr 865 cfm 32.04 cfm/person                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Recirculation Airflow, RVr 865 cfm 32.04 cfm/person                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ventilation Effectiveness, Ev 0.8 Air Changes // hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ventilation Effectiveness, Ev 0.8 Air Changes // hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ASHRAE 62 Ventilation Standard - Under this standard the following apply:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Smoking in Space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ventilation Rate Procedure for this facility requires a ventilation rate (Vor) of [7.5] cfm/person                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Percent of people smoking 0 Filter Efficiency 0 % Cigarettes / hour / person 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| The Ventilation Rate Procedure is one way to achieve acceptable air quality. This procedure prescribes the rate at<br>which ventilation must be delivered to a space and various means to condition that air. The ventilation rates in<br>Table 2 are derived from psysiological considerations, subjective evaluations, and professional judgements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Contaminant Generation Smoking Molecula Dynamic Typical Outsid ASHRAE Limit Steady State Conc Steady State Conc<br>Rate per Generation Weight Air Concentration(nom) With Dynamic Air Without Dynamic Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Required Filter Efficiency (Ef) =<br>Vor (Vo (1 - Ev) + Ev Vs) - Ev Vo Vs =<br>0.1063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Person (Ib/min Rate 1 (g/mole) Cleaner (ppm) Cleaners and Typ. Cleaners and Typ. Cleaners and Typ. (leaners and Typ. (lb/min) (%) Outside Conc. (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (Vs - Vo)(EV Vs - Vor (1 - EV))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Acetone         1.748E-8         1.47E-8         58         25         0.001265         2.95         0.009977         OK         0.03075         OK           Ammonia         5.733E-7         2.205E-7         17         27         0.001727         2.5         1.017         OK         3.306         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Equivalent to Minimum Efficiency Reporting Value (MERV)  11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Benzene         5.88E-10         2.748E-8         78         10         0.002509         0.1         0.001772         OK         0.003248         OK           Carbon Monoxide         3.675E-7         2.205E-6         28         0         2.621         9         3.907         OK         3.907         OK           Formaldehyde         1.0E-20         8.818E-8         30         25         0.01631         0.1         0.005291         OK         0.01631         OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Indoor Air Quality Procedure provides an alternative performance method for acieving acceptable air quality.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nicotine         1.0E-20         2.976E-7         162         20         0.0007551         0.07         0.0002832         OK         0.0007551         OK           Hydrogen Sulfide         4.0E-9         0         34.08         20         0         0.03         0.004313         OK         0.0115         OK           Method Accele         1.14E-7         0         22.04         20         0         1.15         0.1398         OK         0.2488         OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| To control particulates to the proper level at the above ventilation rate. 60-65% filtration is used.<br>In addition to controlling the particulates, known contaminants also need to be controlled to an acceptable level.<br>These are shown in the following pages.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phenol         1.5E-8         0         94.11         20         0         0.03         0.005857         OK         0.01562         OK           TVOC         8.73E-8         0         56.11         35         0         9         0.03893         OK         0.1524         OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| General: Either the Ventilation Rate Procedure or the IAQ Procedure shall be used to design each ventilation system<br>in a building, subject to the following considerations and restrictions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | * Indicates level exceeds 80% of ASHRAE limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ventilation Rate Procedure: This is a prescriptive procedure in which outdoor air intake rates are determined based on<br>space type/application, occupancy level, and floor area. Note: The Ventilation Rate Procedure minimum rates are<br>based on contaminant sources and source strengths that are typical for the listed space types.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IAQ Procedure: This is a design procedure in which outdoor air intake rates and other system design parameters are<br>based on an analysis of contaminant sources, contaminant concentration targets, and perceived acceptability<br>targets. The IAQ Procedure allows credit to be taken for controls that remove contaminants (for example, air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| cleaning devices) or for other design techniques (for examples, selection of materials with lower source strengths)<br>that can be reliably demonstrated to result in indoor contaminant concentrations equal to or lower than those<br>achieved using the Ventilation Rate Procedure. The IAQ Procedure may also be used where the design is intended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Indoor Air Quality Procedure: The Indoor Air Quality (IAQ) Procedure is a performance-based design approach in which the building and its wortilation system are designed to maintain the concentrations of exectly contaminants at or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| which the during and its vehicitation system are designed to maritain the donantiations of specific contaminants at or<br>below certain limits identified during the building design and to achieve the design target level of perceived indoor air<br>quality acceptability by building occupants and/or visitors. For the purposes of this procedure, acceptable perceived<br>indoor air quality excludes dissatisfaction related to thermal comfort, noise and vibration, lighting, and psychological                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L=ASHRAE Limit w/o=Without Dynamic Air Cleaners w=With Dynamic Air Cleaners                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| stressors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AIRQ         Indoor Air Quality Design and Analysis           Project         Pamlico County School WSHP-G1         Notes         Seating area - 512 people. 7.5cfm/person06cfm/sg. ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AIRQ Indeer Air Quality Design and Analysis Project Pamlice County School WSHP-G1 Notes Seating area - 512 people. 7.5cfm/person .06cfm/sq. ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Representative Optima Engineering Play Area - 50 people 0 cfm/person, .30cfm/sq. ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Representative Optima Engineering Play Area - 50 people 0 cfm/person, .30cfm/sq. ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Venuilated Space         Occupants           Building Size         Area         11350         ft <sup>3</sup> Ceiling Height 32         ft         Number of Occupants         562         person(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rventilated-Space         Occupants           Building Size         Area         11350         ft <sup>3</sup> Ceiling Height 32         ft         Number of Occupants         562         person(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Total Volume of Space         363200         ft <sup>3</sup> 646.3         ft <sup>3</sup> /person         Level of Physical Activity         Moderate Exercise           Total Airflow In, Vs         20000         cfm         35.59         cfm/person         Respiratory Flow         64         cfm/person                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total Volume of Space         363200         ft <sup>3</sup> 646.3         ft <sup>3</sup> /person         Level of Physical Activity         Moderate Exercise           Total Airflow In, Vs         20000         cfm         35.59         cfm/person         Respiratory Flow         64         cfm/person                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ventilation Airflow, Vo 2810 cfm 5 cfm/person CO2 Generation 2.5 ft <sup>3</sup> /hr/person                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ventilation Airflow, Vo 2810 cfm 5 cfm/person CO2 Generation 2.5 ft <sup>3</sup> /hr/person                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Recirculation Flow Factor, R 0.8595<br>Air Changes 3.304 /hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Recirculation Flow Factor, R 0.8595<br>Air Changes 3.304 /hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ASHRAE 62 Ventilation Standard - Under this standard the following apply:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Smoking     Filtration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ventilation Rate Procedure for this facility requires a ventilation rate (Vor) of 9.6 cfm/person                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Percent of people smoking 0 Filter Efficiency 0 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| The Ventilation Rate Procedure is one way to achieve acceptable air quality. This procedure prescribes the rate at which ventilation must be delivered to a space and various means to condition that air. The ventilation rates in Table 2 are detected from equilensingle explorations explorate exploration exploration and the professional undergraded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cigarettes / hour / person 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Vor (Vo (1 - Ev) + Ev Vs) - Ev Vo Vs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rate per Generation Weight Air Concentration (ppm) With Dynamic Air Without Dynamic Air Cleaners and Typ. Cleaners and T |
| Required Filter Efficiency (Ef) =<br>(Vs - Vo)(Ev Vs - Vor (1 - Ev)) = 0.1731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (b/min)         (%)         (%)           Acetone         1.746E-8         1.47E-8         58         25         0.001265         2.95         0.01118         OK         0.03075         OK           Assession         5.737E.7         1.77         2.7         0.001737         2.5         1.144         OK 3.305         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Equivalent to Dust Spot Efficiency 60-65% Equivalent to Minimum Efficiency Reporting Value (MERV) 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Benzene         5.88E-10         2.748E-8         78         10         0.002509         0.1         0.00191         OK         0.00348         OK           Carbon Monoxide         3.675E-7         2.205E-6         28         0         2.621         9         3.907         OK         3.907         OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Formaldehyde         1.0E-20         8.818E-8         30         25         0.01631         0.1         0.00593         OK         0.01631         OK           Nicotine         1.0E-20         2.976E-7         162         20         0.0007551         0.07         0.0003146         OK         0.0007551         OK           Hydrogen Sufficie         4.0E-9         0         34.08         20         0         0.03         0.004791         OK 0.0115         OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Indoor Air Quality Procedure provides an alternative performance method for acceptable air quality. To control particulates to the proper level at the above ventilation rate 60-65% filtration is used. In addition to controlling the particulates, known contaminants also need to be controlled to an acceptable level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Methyl Alcohol         1.14E-7         0         32.04         20         0         1.15         0.1452         OK         0.3486         OK           Phenol         1.5E-8         0         94.11         20         0         0.03         0.006506         OK         0.01562         OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| These are shown in the following pages.<br>General: Either the Ventilation Rate Procedure or the IAQ Procedure shall be used to design each ventilation system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TVOC 8.73E-8 0 56.11 35 0 9 0.04418 OK 0.1524 OK<br>* Indicates level exceeds 80% of ASHRAE limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| in a building, subject to the following considerations and restrictions.<br>Ventilation Rate Procedure: This is a prescriptive procedure in which outdoor air intake rates are determined based on<br>space type/application, occupancy level, and floor area. Note: The Ventilation Rate Procedure minimum rates are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| based on contaminant sources and source strengths that are typical for the listed space types.<br>IAQ Procedure: This is a design procedure in which outdoor air intake rates and other system design parameters are<br>based on an analysis of contaminant sources, contaminant concentration targets, and perceived acceptability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| targets. The IAQ Procedure allows credit to be taken for controls that remove contaminants (for example, air<br>cleaning devices) or for other design techniques (for examples, selection of materials with lower source strengths)<br>that can be reliably demonstrated to result in indoor contaminant concentrations equal to or lower than those<br>achieved using the Ventilation Rate Procedure. The IAO Procedure may also be used where the design is intended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| to attain specific target contaminant concentrations or levels of acceptability of perceived indoor air quality.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Acetone Ammonia Benzene Carbon Formaldehyde Nicotine Hydrogen SulfideMethyl Alcohol Phenol<br>Monoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| which the building and its ventilation system are designed to maintain the concentrations of specific contaminants at or<br>below certain limits identified during the building design and to achieve the design target level of perceived indoor air<br>quality acceptability by building occupants and/or visitors. For the purposes of this procedure, acceptable perceived                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L=ASHRAE Limit w/o=Without Dynamic Air Cleaners w=With Dynamic Air Cleaners                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| indoor air quaiity excludes dissatisfaction related to thermal comfort, holse and vibration, lighting, and psychological<br>stressors.<br>Design Approaches: Select one or a combination of the following design approaches to determine minimum space and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| system outdoor airflow rates and all other design parameters deemed relevant (e.g., air cleaning efficiencies and<br>supply airflow rates).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AirQ Indoor Air Quality Design and Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AirQ Indoor Air Quality Design and Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Project Pamlico County School WSHP-L Notes 7.5cfm/person<br>Representative Optima Engineering .06cfm/sq.ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Project Pamlico County School WSHP-L Notes 7.5cfm/person<br>Representative Optima Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ventilated Space Building Size Area 5700 ft <sup>3</sup> Ceiling Heigh 24.5 ft Number of Occupants 121 person(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ventilated Space         Occupants           Building Size         Area 5700         ft <sup>3</sup> Ceiling Height[24.5         ft         Number of Occupants         121         person(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Total Volume of Space     139700     ft <sup>3</sup> 1154     ft <sup>3</sup> /person     Level of Physical Activity     Standing, Desk Work       Total Airflow In Vis     5000     cfm     41.32     cfm/person     Bespiratory Flow     24     cfm/person                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total Volume of Space         139700         ft <sup>3</sup> 1154         ft <sup>3</sup> /person         Level of Physical Activity         Standing, Desk Work           Total Airflow In Vs         5000         cfm (41.32)         cfm (person         Respiratory Flow         24         cfm (person                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ventilation Airflow, Vo 605 cfm 5 cfm/person CO2 Generation 0.93 ft <sup>3</sup> /hr/person                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ventilation Airflow, Vo 605 cfm 5 cfm/person CO2 Generation 0.93 ft <sup>3</sup> /hr/person                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Recirculation Flow Factor, R 0.879<br>Air Changes 2.148 //hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Recirculation Flow Factor, R 0.879<br>Air Changes 2.148 //hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ASHRAE 62 Ventilation Standard - Under this standard the following apply:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Smoking Filtration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ventilation Rate Procedure for this facility requires a ventilation rate (Vor) of 10.3 cfm/person                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Percent of people smoking 0 Filter Efficiency 0 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| The Ventilation Rate Procedure is one way to achieve acceptable air quality. This procedure prescribes the rate at which ventilation must be delivered to a space and various means to condition that air. The ventilation rates in Table 2 are derived from presidentifications, subjective evaluations, and professional undermants.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cigarettes / hour / person 0 Contaminant Generation Smeking Molecula Dynamic Tynical Outside SHRAE Lime Steady State Conc Steady State Conc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Vor (Vo (1 - Ev) + Ev Vs) - Ev Vo Vs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rate per Generation Weight Air Concentration (ppm) With Dynamic Air Without Dynamic Ar Person (Ib/mir Rate 1 (g/mole) Cleaner (ppm) Cleaners and Typ. Cleaners and Typ. Cleaners and Typ. Outside Conc. (ppm) Utside Conc. (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (Vs - Vo)(Ev Vs - Vor (1 - Ev))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Acetone         1.746E-8         1.47E-8         58         25         0.001265         2.95         0.01184         OK         0.03075         OK           Ammonia         5.733E-7         2.205E-7         17         27         0.001277         2.5         1.213         OK         3.306         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Equivalent to Dust Spot Efficiency 60-65% Equivalent to Minimum Efficiency Reporting Value (MERV) 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Benzene         5.88E-10         2.748E-8         78         10         0.002509         0.1         0.001982         OK         0.003248         OK           Carbon Monoxide         3.675E-7         2.205E-6         28         0         2.621         9         3.907         OK         3.907         OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | normaldenyde         1.0E-20         8.818E-8         30         25         0.01631         0.1         0.006282         OK         0.01631         OK           Nicotine         1.0E-20         2.976E-7         162         20         0.0007551         0.07         0.0003316         OK         0.0007551         OK           Hydrogen Suffide         4.0E-9         0         34.08         20         0         0.03         0.00505         OK         0.0115         OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Indoor Air Quality Procedure provides an alternative performance method for acieving acceptable air quality.<br>To control particulates to the proper level at the above ventilation rate 60-65% filtration is used.<br>In addition to controlling the particulates, known contaminants also need to be controlled to an acceptable level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Methyl Alcohol         1.14E-7         0         32.04         20         0         1.15         0.1531         OK         0.3486         OK           Phenol         1.5E-8         0         94.11         20         0         0.03         0.006858         OK         0.01562         OK           TVOC         8.73E-8         0         56.44         25         0         0.03         0.006858         OK         0.01562         OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| These are shown in the following pages.<br>General: Either the Ventilation Rate Procedure or the IAQ Procedure shall be used to design each ventilation system<br>in a building, subject to the following considerations and centrations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a.rac-o او اوم.rac-o المحافظ المحاف                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Ventilation Rate Procedure: This is a prescriptive procedure in which outdoor air intake rates are determined based on<br>space type/application, occupancy level, and floor area. Note: The Ventilation Rate Procedure minimum rates are<br>beend on contamined sources and source one concerned to be based on the two lines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| uased on contaminant sources and source strengths that are typical for the listed space types.<br>IAQ Procedure: This is a design procedure in which outdoor air intake rates and other system design parameters are<br>based on an analysis of contaminant sources, contaminant concentration targets, and perceived acceptability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| targets. The IAQ Procedure allows credit to be taken for controls that remove contaminants (for example, air<br>cleaning devices) or for other design techniques (for examples, selection of materials with lower source strengths)<br>that can be reliably demonstrated to result in indoor contaminant concentrations equal to or lower than those<br>achieved using the Ventilation Rate Procedure. The IAO Procedure must also be used to design the interval of<br>the second strength of the second | Manal Malay Manal Malay Manal Malay Malay Malay Malay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Index of using the remeasurement nate indexed in the trade indexed in the trade of the second        | Acetone Ammonia Benzene Carbon Formaldehyde Nicotine Hydrogen SulfideMethyl Alcohol Phenol<br>Monoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| which the building and its ventilation system are designed to maintain the concentrations of specific contaminants at or<br>below certain limits identified during the building design and to achieve the design target level of perceived indoor air<br>quality acceptability by building occupants and/or visitors. For the purposes of this procedure, acceptable perceived<br>index is quality acceptable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L=ASHRAE Limit w/o=Without Dynamic Air Cleaners w=With Dynamic Air Cleaners                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| indoor air quality excludes dissatisfaction related to thermal comfort, noise and vibration, lighting, and psychological stressors. Design Approaches: Select one or a combination of the following design approaches to determine minimum approaches and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| way a work are to be a comparison or the topowing design approaches to determine minimum space and<br>system outdoor airflow rates and all other design parameters deemed relevant (e.g., air cleaning efficiencies and<br>supply airflow rates).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| AirQ Indoor Air Quality Design an<br>Project Pamilico County School W                    | d Analysis<br>SHP-C                         | Notes 7.5cfm                          | Vperson                                                      |                                                                            |
|------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------|
| Representative Optima Engineering                                                        |                                             | 12cfm                                 | /sq.ft.                                                      |                                                                            |
| obrus rulinourili                                                                        |                                             |                                       |                                                              |                                                                            |
| Ventilated Space                                                                         |                                             |                                       | Occupants-                                                   |                                                                            |
| Building Size Area 750                                                                   | ft <sup>3</sup> Ceiling Height              | 10 ft                                 | Number of Occupants                                          | 27 person(s)                                                               |
| Total Volume of Space 7500                                                               | ft <sup>3</sup> 277.8                       | ft³/person                            | Level of Physical Activity                                   | Standing, Desk Work                                                        |
| Total Airflow In, Vs 1000                                                                | cfm 37.04                                   | cfm/person                            | Respiratory Flow                                             | 24 cfm/person                                                              |
| Ventilation Airflow, Vo 135                                                              | cfm 5                                       | cfm/person                            | CO2 Generation                                               | 0.93 ft³/hr/person                                                         |
| Recirculation Airflow, RVr 865                                                           | cfm 32.04                                   | cfm/person                            |                                                              |                                                                            |
| Recirculation Flow Factor, R 0.865                                                       | i                                           |                                       |                                                              |                                                                            |
| Ventilation Effectiveness, Ev 0.8                                                        | Air Changes 8                               | /hour                                 |                                                              |                                                                            |
| CO2 Sources in Ventilated Space                                                          | _                                           | 1                                     |                                                              |                                                                            |
| Outdoor Concentration 400                                                                | ppm                                         | 5000                                  | CO2 Concentrati                                              | ion vs. Time                                                               |
| Initial Indoor Concentration 400                                                         | ppm                                         | 5000                                  |                                                              |                                                                            |
| CO2 Generation Rate by 0                                                                 | ft <sup>a</sup> /hr                         | iucd - 2000                           |                                                              |                                                                            |
| Steady State                                                                             |                                             | ]                                     |                                                              |                                                                            |
| After an infinite amount of time,                                                        |                                             | 5 2000                                |                                                              |                                                                            |
| The CO2 level is 4659                                                                    | ppm                                         | § 1000                                |                                                              |                                                                            |
| Instantaneous Level                                                                      | -                                           | 」<br>1 _                              | Y                                                            |                                                                            |
| At Time = 120                                                                            | min                                         | 0                                     | 0 50 100                                                     | 150 200 250 300                                                            |
| The CO2 level is 3902                                                                    | ppm                                         |                                       | ті<br>ті                                                     | me (min)                                                                   |
| Page 40.9, 1991 ASHRAE HVAC Application                                                  | ns Handbook                                 | - Room                                | Concentration —                                              | Steady State Concentration                                                 |
| (Quoting ASHRAE 62-1999 from the Forew                                                   | ord section addemdum                        | 62f page 1)                           |                                                              |                                                                            |
| Addendum 62f addresses a lack of clarity i<br>of indoor carbon dioxide (CO2) levels. The | ANSI/ASHRAE Stand<br>standard previously le | ard 62-1989 that<br>d many users to d | has contributed to several m<br>conclude that CO2 was itself | isunderstandings regarding the sign<br>a comprehensive indicator of indoor |

OSHA has a CO2 limit of 5000ppm as outlined in Table Z-1 Federal Register #: 58:35338-35351 Standard Number: 1910.1000

TVOC

TVOC

TVOC

AirQ Indoor Air Quality Design and Analysis Project Pamlico County School WSHP-G1 Notes Seating area - 512 people, 7.5cfm/person .06cfm/sq. ft Play Area - 50 people 0 cfm/person, .30cfm/sq. ft Representative Optima Engineering 
 Number of Occupants
 562
 person(s)

 Level of Physical Activity
 Moderate Exercise
 Building Size Area 11350 ft<sup>3</sup> Ceiling Heigh 32 Total Volume of Space 363200 ft<sup>3</sup> 646.3 ft<sup>3</sup>/person 64 cfm/person Total Airflow In, Vs 20000 cfm 35.59 cfm/person Respiratory Flow 2810 cfm 5 cfm/person Ventilation Airflow, Vo CO2 Generation 2.5 ft³/hr/person Recirculation Airflow, RVr 17190 cfm 30.59 cfm/person Recirculation Flow Factor, R 0.8595 Air Changes 3.304 /hour Ventilation Effectiveness, Ev 0.8 CO2 Sources in Ventilated Space 
 Outdoor Concentration
 400
 ppm

 Initial Indoor Concentration
 400
 ppm

 CO2 Generation Rate by Non-Occupant Sources
 0
 ft³/hr
 CO2 Concentration vs. Time 12000 8000 Steady State After an infinite amount of time, 4000 The CO2 level is 11850 ppm Instantaneous Level 0 F 120 min At Time = 0 50 100 150 200 250 300 6401 ppm Time (min) The CO2 level is - Room Concentration - Steady State Concentration Page 40.9, 1991 ASHRAE HVAC Applications Handbook (Quoting ASHRAE 62-1999 from the Foreword section addemdum 62f page 1)

Addendum 62f addresses a lack of clarity in ANSI/ASHRAE Standard 62-1989 that has contributed to several misunderstandings regarding the significance of indoor carbon dioxide (CO2) levels. The standard previously led many users to conclude that CO2 was itself a comprehensive indicator of indoor air quality and a contaminant with its own health impacts, rather than simply a useful indicator of the concentration of human bioeffluents. OSHA has a CO2 limit of 5000ppm as outlined in Table Z-1 Federal Register #: 58:35338-35351 Standard Number: 1910.1000

| roject Pamlico Cour                            | nty School WSI | HP-L   |                 | Notes      | 7.5cfm  | perso | n           |               |             |            |            |     |
|------------------------------------------------|----------------|--------|-----------------|------------|---------|-------|-------------|---------------|-------------|------------|------------|-----|
| epresentative Optima Engin                     | eering         |        |                 | ]          | Joocini | ad ur |             |               |             |            |            |     |
| entilated Space                                |                |        |                 |            | 5       | POcci | ipants      |               |             |            |            |     |
| Building Size Area                             | 5700           | ft3    | Ceiling Height  | 24.5       | ٦ ft    | Nu    | mber of O   | ccupants      | 121         | p p        | erson(s)   |     |
| Total Volume of Space                          | 139700         | ft3    | 1154            | ft³/persor | ,       | Lev   | vel of Phys | ical Activity | Standir     | ng, Desk I | Nork       |     |
| Total Airflow In, Vs                           | 5000           | cfm    | 41.32           | cfm/pers   | on      | Re    | spiratory F | low           | 24          | cf         | m/person   |     |
| Ventilation Airflow, Vo                        | 605            | cfm    | 5               | cfm/pers/  | on      | 00    | 2 General   | tion          | 0.93        | ft         | /hr/person |     |
| Recirculation Airflow, RVr                     | 4395           | cfm    | 36.32           | cfm/pers   | on      |       |             |               |             |            |            |     |
| Recirculation Flow Factor, R                   | 0.879          |        | _               |            |         |       |             |               |             |            |            |     |
| Ventilation Effectiveness, Ev                  | 0.8            | A      | ir Changes 2.14 | 48         | /hour   |       |             |               |             |            |            |     |
| 02 Sources in Ventilated Sp                    | ace            |        |                 | <br>1      |         |       |             |               |             |            |            |     |
| Outdoor Concentration                          | 400            | ppm    |                 |            |         |       | C02         | Concentra     | tion vs. Ti | me         |            |     |
| initial Indoor Concentration                   | 400            | ppm    |                 |            | 5000 -  |       |             |               |             |            |            |     |
| CO2 Generation Rate by<br>Non-Occupant Sources | 0              | ft³/hr |                 | (wod)      | 4000 -  |       |             | -             | -           |            | -          |     |
| eady State                                     |                |        |                 | 1 5        | 3000 -  | -     |             |               | -           |            | _          | -   |
| After an infinite amount of tir                | me,            |        |                 | e la       | 2000 -  |       |             | _             | -           | _          | _          |     |
| The CO2 level is                               | 4659           | ppm    |                 | J S        | 1000 -  |       |             |               |             |            |            |     |
| stantaneous Level                              |                |        |                 | i          |         |       |             |               |             |            |            |     |
| At Time =                                      | 120            | min    |                 |            | 0-      | )     | 50          | 100           | 150         | 200        | 250        | 300 |
| The CO2 level is                               | 1849           | ppm    |                 |            |         |       |             | т             | ime (min)   |            |            |     |
| age 40.9, 1991 ASHRAE HV                       | AC Application | s Han  | dbook           | - 1        | Room    | Conce | ntration    | -             | Steady S    | State Con  | centration |     |
|                                                |                |        |                 |            |         |       |             |               |             |            |            |     |

OSHA has a CO2 limit of 5000ppm as outlined in Table Z-1 Federal Register #: 58:35338-35351 Standard Number: 1910.1000

|    | Building Size<br>Total Volume<br>Total Airflow Ir<br>Ventilation Air<br>Recirculation<br>Recirculation<br>Ventilation Eff           | Area<br>n, Vs<br>flow, Vo<br>Airflow, RVr<br>Flow Factor, R<br>Flow Factor, R                                                | 1500<br>15000<br>1800<br>190<br>1610<br>0.8944<br>0.8                                                                      | ] ft <sup>3</sup><br>] ft <sup>3</sup><br>] cfm<br>] cfm<br>] cfm<br>] , <sup>4</sup> | Ceiling Heigh<br>394.7<br>47.37<br>5<br>42.37<br>Lir Changes<br>7.2                                                                       | 10<br>ft³/person<br>cfm/perso<br>cfm/perso<br>cfm/perso                                                      | ft<br>on<br>on<br>on<br>/hour                                                |                                           | Number of Occupants<br>Level of Physical Activity<br>Respiratory Flow<br>CO2 Generation                                                                                                          | 38<br>Standing, De<br>24<br>0.93 | person(s)<br>isk Work<br>cfm/person<br>ft <sup>3</sup> /hr/person |
|----|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------|
|    | ASHRAE 62 Ve                                                                                                                        | Procedure for                                                                                                                | ard - Under th                                                                                                             | nis star                                                                              | a ventilation rat                                                                                                                         | ing apply:                                                                                                   | 17                                                                           | 7.1                                       | 1 cfm/person                                                                                                                                                                                     |                                  |                                                                   |
|    | The Ventilati<br>which ventila<br>Table 2 are (                                                                                     | ion Rate Proce<br>ation must be o<br>derived from p                                                                          | dure is one w<br>delivered to a<br>sysiological co                                                                         | ay to a<br>space<br>onsider                                                           | chieve acceptal<br>and various me<br>ations, subjectiv                                                                                    | ble air qual<br>ans to cont<br>ve evaluatio                                                                  | ity. This<br>dition th<br>ons, and                                           | is<br>hat                                 | procedure prescribes the r<br>t air. The ventilation rates i<br>professional judgements.                                                                                                         | ate at<br>n                      |                                                                   |
|    | Required                                                                                                                            | Filter Efficient                                                                                                             | $cy(Ef) = \frac{Vo}{(V)}$                                                                                                  | r (Vo (<br>s - Vo)                                                                    | 1 - Ev) + Ev Vs)<br>(Ev Vs - Vor (1 -                                                                                                     | - Ev Vo Vs<br>Ev))                                                                                           | = [                                                                          | 0.                                        | 3256                                                                                                                                                                                             |                                  |                                                                   |
|    | Equ                                                                                                                                 | ivalent to Minir                                                                                                             | Equivaler<br>num Efficienc                                                                                                 | nt to Di<br>y Repo                                                                    | ust Spot Efficien<br>orting Value (ME                                                                                                     | icy<br>RV)                                                                                                   | [                                                                            | 80                                        | 3                                                                                                                                                                                                |                                  |                                                                   |
| ce | Indoor Air Quali<br>To control partic<br>In addition to co<br>These are show                                                        | ity Procedure p<br>culates to the p<br>ontrolling the p<br>wn in the follow                                                  | provides an alt<br>proper level at<br>articulates, kn<br>ing pages.                                                        | ernativ<br>the ab<br>own co                                                           | ve performance<br>ove ventilation r<br>ontaminants also                                                                                   | method for<br>rate, 80-85<br>o need to b                                                                     | acievin<br>%<br>e contro                                                     | ng                                        | acceptable air quality.<br>filtration is used<br>led to an acceptable level.                                                                                                                     | I.                               |                                                                   |
|    | General: Either<br>in a building, su                                                                                                | the Ventilation                                                                                                              | Rate Proced                                                                                                                | ure or t<br>eration                                                                   | the IAQ Procedu<br>is and restriction                                                                                                     | ure shall be                                                                                                 | e used t                                                                     | to                                        | design each ventilation sys                                                                                                                                                                      | stem                             |                                                                   |
|    | Ventilation Rate<br>space type/app<br>based on conta                                                                                | Procedure: Th<br>lication, occup<br>minant source                                                                            | his is a prescr<br>ancy level, an<br>s and source :                                                                        | iptive p<br>d floor<br>strengt                                                        | procedure in whi<br>area. Note: The<br>hs that are typic                                                                                  | ich outdoor<br>Ventilation<br>al for the li                                                                  | air inta<br>Rate F<br>sted sp                                                | aki<br>Pri<br>Xai                         | e rates are determined bas<br>ocedure minimum rates an<br>ce types.                                                                                                                              | ed on<br>B                       |                                                                   |
|    | IAQ Procedure:<br>based on an an<br>targets. The IA<br>cleaning device<br>that can be relia<br>achieved using<br>to attain specific | This is a designalysis of conta<br>Q Procedure a<br>s) or for other<br>ably demonstra<br>the Ventilation<br>c target contant | gn procedure i<br>minant source<br>illows credit to<br>design technik<br>ted to result in<br>Rate Proced<br>ninant concern | in whices, con<br>be tak<br>ques (f<br>n indoc<br>ure. Th<br>trations                 | h outdoor air int<br>taminant concei<br>ten for controls t<br>or examples, se<br>or contaminant o<br>e IAQ Procedur<br>s or levels of acc | take rates a<br>ntration tan<br>that remove<br>ection of n<br>concentration<br>re may also<br>ceptability of | and othe<br>gets, an<br>e contain<br>naterials<br>ons equipe use<br>of perce | ier<br>nd<br>im<br>Is<br>ual<br>ed<br>eiv | system design parameters<br>perceived acceptability<br>inants (for example, air<br>with lower source strength<br>to or lower than those<br>where the design is intend<br>ved indoor air quality. | ; are<br>s)<br>led               |                                                                   |
|    | Indoor Air Quali<br>which the buildi<br>below certain lir<br>quality acceptat<br>indoor air qualit<br>stressors.                    | ity Procedure:<br>ng and its ven<br>mits identified<br>bility by buildin<br>y excludes dis                                   | The Indoor Air<br>tilation system<br>during the buil<br>g occupants a<br>satisfaction re                                   | Qualit<br>are de<br>ding de<br>nd/or v<br>lated to                                    | ty (IAQ) Procedu<br>ssigned to main<br>esign and to ach<br>visitors. For the<br>o thermal comfo                                           | ure is a per<br>tain the cor<br>nieve the de<br>purposes o<br>rt, noise ar                                   | forman<br>ncentral<br>esign ta<br>if this pr<br>1d vibra                     | arç<br>arç                                | e-based design approach in<br>ons of specific contaminant<br>get level of perceived indoo<br>cedure, acceptable percei-<br>on, lighting, and psycholog                                           | n<br>sator<br>ved<br>ical        |                                                                   |
|    | AirQ                                                                                                                                | Indoor Air Qua                                                                                                               | lity Design an                                                                                                             | d Analy                                                                               | rsis                                                                                                                                      |                                                                                                              |                                                                              |                                           |                                                                                                                                                                                                  |                                  |                                                                   |
|    | Project                                                                                                                             | Pamlico Cour                                                                                                                 | ity School WS                                                                                                              | HP-G                                                                                  | 2                                                                                                                                         | Notes                                                                                                        | Seating<br>Play Ar                                                           | g                                         | area - 202 people, 7.5cfm/                                                                                                                                                                       | person .06cfr                    | n/sq. ft<br>ft                                                    |
|    | Representative                                                                                                                      | Optima Engin                                                                                                                 | eering                                                                                                                     |                                                                                       |                                                                                                                                           | ]                                                                                                            | r lay Al                                                                     | 10                                        |                                                                                                                                                                                                  | n, sounday.                      | n.                                                                |
| 1  | Ventilated-Spac                                                                                                                     | e                                                                                                                            |                                                                                                                            |                                                                                       |                                                                                                                                           |                                                                                                              |                                                                              | 1                                         | Occupants-                                                                                                                                                                                       |                                  |                                                                   |
|    | Building Size                                                                                                                       | Area                                                                                                                         | 7650                                                                                                                       | ft3                                                                                   | Ceiling Height                                                                                                                            | 32                                                                                                           | ] ft [                                                                       |                                           | Number of Occupants                                                                                                                                                                              | 302                              | person(s)                                                         |
|    | Total Volume                                                                                                                        | of Space                                                                                                                     | 244800                                                                                                                     | ] ft³                                                                                 | 810.6                                                                                                                                     | ft³/person                                                                                                   |                                                                              |                                           | Level of Physical Activity                                                                                                                                                                       | Moderate Ex                      | ercise                                                            |
|    | Total Airflow In                                                                                                                    | n, Vs                                                                                                                        | 15450                                                                                                                      | cfm                                                                                   | 51.16                                                                                                                                     | cfm/perso                                                                                                    | n                                                                            |                                           | Respiratory Flow                                                                                                                                                                                 | 64                               | cfm/person                                                        |
|    | Ventilation Air                                                                                                                     | flow, Vo                                                                                                                     | 1510                                                                                                                       | cfm                                                                                   | 5                                                                                                                                         | cfm/perso                                                                                                    | n                                                                            |                                           | CO2 Generation                                                                                                                                                                                   | 2.5                              | ft³/hr/person                                                     |
|    | Recirculation                                                                                                                       | Airflow, RVr                                                                                                                 | 13940                                                                                                                      | jcfm<br>1                                                                             | 46.16                                                                                                                                     | cfm/perso                                                                                                    | n                                                                            |                                           |                                                                                                                                                                                                  |                                  |                                                                   |
|    | Kecirculation                                                                                                                       | Flow Factor, R                                                                                                               | 0.9023                                                                                                                     | ן<br>1 ^                                                                              | Air Changes 3.78                                                                                                                          | 87                                                                                                           | /hour                                                                        |                                           |                                                                                                                                                                                                  |                                  |                                                                   |
|    | vormation En                                                                                                                        | eonveness, Ev                                                                                                                | 0.0                                                                                                                        | J                                                                                     |                                                                                                                                           |                                                                                                              | - 1                                                                          | 11                                        |                                                                                                                                                                                                  |                                  |                                                                   |

AirQ Indoor Air Quality Design and Analysis

Project Pamlico County School WSHP-SL

Representative Optima Engineering

rVentilated-Space-----

ASHRAE 62 Ventilation Standard - Under this standard the following apply: Ventilation Rate Procedure for this facility requires a ventilation rate (Vor) of 11 cfm/person

- The Ventilation Rate Procedure is one way to achieve acceptable air quality. This procedure prescribes the rate at which ventilation must be delivered to a space and various means to condition that air. The ventilation rates in Table 2 are derived from psysiological considerations, subjective evaluations, and professional judgements.
- Vor (Vo (1 Ev) + Ev Vs) Ev Vo Vs Required Filter Efficiency (Ef) = (0.1435 (Vs - Vo)(Ev Vs - Vor (1 - Ev)) Equivalent to Dust Spot Efficiency Equivalent to Minimum Efficiency Reporting Value (MERV)
- Indoor Air Quality Procedure provides an alternative performance method for acieving acceptable air quality. To control particulates to the proper level at the above ventilation rate 60-65% filtration is used. In addition to controlling the particulates, known contaminants also need to be controlled to an acceptable level. These are shown in the following pages. General: Either the Ventilation Rate Procedure or the IAQ Procedure shall be used to design each ventilation system in a building, subject to the following considerations and restrictions. Ventilation Rate Procedure: This is a prescriptive procedure in which outdoor air intake rates are determined based on space type/application, occupancy level, and floor area. Note: The Ventilation Rate Procedure minimum rates are based on contaminant sources and source strengths that are typical for the listed space types. IAQ Procedure: This is a design procedure in which outdoor air intake rates and other system design parameters are
- based on an analysis of contaminant sources, contaminant concentration targets, and benefities and example, air targets. The IAQ Procedure allows credit to be taken for controls that remove contaminants (for example, air cleaning devices) or for other design techniques (for examples, selection of materials with lower source strengths) that can be reliably demonstrated to result in indoor contaminant concentrations aqual to or lower than those achieved using the Ventilation Rate Procedure. The IAQ Procedure may also be used where the design is intended to attain specific target contaminant concentrations or levels of acceptability of perceived indoor air quality. Indoor Air Quality Procedure: The Indoor Air Quality (IAQ) Procedure is a performance-based design approach in which the building and its ventilation system are designed to maintain the concentrations of specific contaminants at or below certain limits identified during the building design and to achieve the design target level of perceived indoor air quality acceptability by building occupants and/or visitors. For the purposes of this procedure, acceptable perceived indoor air quality excludes dissatisfaction related to thermal comfort, noise and vibration, lighting, and psychological stressors.
- Design Approaches: Select one or a combination of the following design approaches to determine minimum space and system outdoor airflow rates and all other design parameters deemed relevant (e.g., air cleaning efficiencies and supply airflow rates).

# AirQ Indoor Air Quality Design and Analysis

| Project                                                                   | Pamlico Count                                         | ty School WS                                        | HP-D                          |                                                      | Notes                                        | 7.5 C                            | FN               | l/Person<br>M/SF                                                                         |               |               |
|---------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|-------------------------------|------------------------------------------------------|----------------------------------------------|----------------------------------|------------------|------------------------------------------------------------------------------------------|---------------|---------------|
| Representative                                                            | Optima Engine                                         | eering                                              |                               |                                                      |                                              | 0.100                            |                  | WE OF                                                                                    |               |               |
| [Ventilated Space                                                         | 8                                                     |                                                     |                               |                                                      |                                              |                                  | 1                | Occupants-                                                                               |               |               |
| Building Size                                                             | Area                                                  | 3750                                                | ft3                           | Ceiling Height                                       | 25                                           | ft                               |                  | Number of Occupants                                                                      | 180           | person(s)     |
| Total Volume of                                                           | of Space                                              | 93750                                               | ft3                           | 520.8                                                | ft³/persor                                   | 1                                |                  | Level of Physical Activity                                                               | Sedentary, at | Ease          |
| Total Airflow In                                                          | n, Vs                                                 | 8000                                                | cfm                           | 44.44                                                | cfm/perse                                    | on                               |                  | Respiratory Flow                                                                         | 16            | cfm/person    |
| Ventilation Airf                                                          | low, Vo                                               | 900                                                 | cfm                           | 5                                                    | cfm/perse                                    | on                               |                  | CO2 Generation                                                                           | 0.62          | ft³/hr/person |
| Recirculation A                                                           | Airflow, RVr                                          | 8000                                                | cfm                           | 39.44                                                | cfm/perse                                    | on                               |                  |                                                                                          |               |               |
| Recirculation F                                                           | Flow Factor, R                                        | 1                                                   |                               |                                                      |                                              |                                  |                  |                                                                                          |               |               |
| Ventilation Effe                                                          | ectiveness, Ev                                        | .8                                                  | A                             | ir Changes 5.1                                       | 2                                            | /hour                            |                  |                                                                                          |               |               |
| ASHRAE 62 Ventilation Standard - Under this standard the following apply: |                                                       |                                                     |                               |                                                      |                                              |                                  |                  |                                                                                          |               |               |
| Ventilation Rate                                                          | Procedure for                                         | this facility rec                                   | quires                        | a ventilation ra                                     | te (Vor) of                                  | [1                               | 11.              | 3 cfm/person                                                                             |               |               |
| The Ventilati<br>which ventila<br>Table 2 are d                           | on Rate Proced<br>ition must be de<br>derived from ps | dure is one wa<br>elivered to a s<br>ysiological co | ny to av<br>pace a<br>nsidera | chieve accepta<br>and various me<br>ations, subjecti | ble air quali<br>ans to cond<br>ve evaluatio | ity. Thi<br>lition th<br>ons, an | his<br>hat<br>nd | procedure prescribes the ra<br>air. The ventilation rates in<br>professional judgements. | te at         |               |
|                                                                           |                                                       | Vor                                                 | (Vo (1                        | I - Ev) + Ev Vs                                      | ) - Ev Vo Vs                                 | ;                                | _                |                                                                                          |               |               |
| Required                                                                  | Filter Efficiency                                     | y (Ef) = (Vs                                        | - Vo)(                        | Ev Vs - Vor (1                                       | - Ev))                                       | =                                | 0                | 1792                                                                                     |               |               |
|                                                                           |                                                       | Equivalen                                           | t to Du                       | ist Spot Efficier                                    | ncy                                          |                                  | 6                | 0-65%                                                                                    |               |               |
| Equi                                                                      | ivalent to Minim                                      | um Efficiency                                       | Repo                          | rting Value (ME                                      | RV)                                          |                                  | 1                | 1                                                                                        |               |               |
|                                                                           |                                                       |                                                     |                               |                                                      |                                              |                                  |                  |                                                                                          |               |               |
| Indoor Air Owell                                                          | Dressdure er                                          | envideo on oliv                                     | matio                         |                                                      | mathead for                                  | e e les é                        |                  | essentable air quality                                                                   |               |               |

Indoor Air Quality Procedure provides an alternative performance method for acieving acceptable air quality. To control particulates to the proper level at the above ventilation rate, 60-65% filtration is used. In addition to controlling the particulates, known contaminants also need to be controlled to an acceptable level. These are shown in the following pages.

General: Either the Ventilation Rate Procedure or the IAQ Procedure shall be used to design each ventilation system in a building, subject to the following considerations and restrictions. Ventilation Rate Procedure: This is a prescriptive procedure in which outdoor air intake rates are determined based on space type/application, occupancy level, and floor area. Note: The Ventilation Rate Procedure minimum rates are based on contaminant sources and source strengths that are typical for the listed space types. IAQ Procedure: This is a design procedure in which outdoor air intake rates and other system design parameters are based on an analysis of contaminant sources, contaminant concentration targets, and perceived acceptability targets. The IAQ Procedure allows credit to be taken for controls that remove contaminants (for example, air cleaning devices) or for other design techniques (for examples, selection of materials with lower source strengths) that can be reliably demonstrated to result in indoor contaminant concentrations equal to or lower than those achieved using the Ventilation Rate Procedure. The IAQ Procedure may also be used where the design is intended to attain specific target contaminant concentrations or levels of acceptability of perceived indoor air quality. Indoor Air Quality Procedure: The Indoor Air Quality (IAQ) Procedure is a performance-based design approach in which the building and its ventilation system are designed to maintain the concentrations of specific contaminants at or below certain limits identified during the building design and to achieve the design target level of perceived indoor air quality acceptability by building occupants and/or visitors. For the purposes of this procedure, acceptable perceived indoor air quality excludes dissatisfaction related to thermal comfort, noise and vibration, lighting, and psychological eterscore.

Design Approaches: Select one or a combination of the following design approaches to determine minimum space and system outdoor airflow rates and all other design parameters deemed relevant (e.g., air cleaning efficiencies and supply airflow rates).



| roject Pamlico Count                                                                                                                                                                                                                                                                                                                    | County School WSHP-SL                                                                            |                                                |                                                                               | Notes                                              | 10cfm/                                                                    | person                |                   |                                                                                  |                                            |                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------|-----------------------|-------------------|----------------------------------------------------------------------------------|--------------------------------------------|----------------|
| epresentative Optima Engine                                                                                                                                                                                                                                                                                                             | eering                                                                                           |                                                |                                                                               | ]                                                  | .18cfm                                                                    | rsq.ft.               |                   |                                                                                  |                                            |                |
| entilated Space                                                                                                                                                                                                                                                                                                                         |                                                                                                  |                                                |                                                                               | _                                                  | 5                                                                         | -Occupants            | ;                 |                                                                                  |                                            |                |
| Building Size Area                                                                                                                                                                                                                                                                                                                      | 1500                                                                                             | ft <sup>a</sup>                                | Ceiling Height                                                                | 10                                                 | h [                                                                       | Number                | of Occupants      | 38                                                                               | person                                     | (s)            |
| Total Volume of Space                                                                                                                                                                                                                                                                                                                   | 15000                                                                                            | ft3                                            | 394.7                                                                         | ft³/persor                                         | _                                                                         | Level of              | Physical Activity | Standing, D                                                                      | Desk Work                                  |                |
| Total Airflow In, Vs                                                                                                                                                                                                                                                                                                                    | 1800                                                                                             | cfm                                            | 47.37                                                                         | cfm/pers                                           | on                                                                        | Respirat              | ory Flow          | 24                                                                               | cfm/pe                                     | rson           |
| Ventilation Airflow, Vo                                                                                                                                                                                                                                                                                                                 | 190                                                                                              | cfm                                            | 5                                                                             | cfm/pers                                           | on                                                                        | CO2 Ger               | neration          | 0.93                                                                             | ft³/hr/p                                   | erson          |
| Recirculation Airflow, RVr                                                                                                                                                                                                                                                                                                              | 1610                                                                                             | cfm                                            | 42.37                                                                         | cfm/pers                                           | on                                                                        |                       |                   |                                                                                  |                                            |                |
| Recirculation Flow Factor, R                                                                                                                                                                                                                                                                                                            | 0.8944                                                                                           |                                                |                                                                               |                                                    |                                                                           |                       |                   |                                                                                  |                                            |                |
| Ventilation Effectiveness, Ev                                                                                                                                                                                                                                                                                                           | 0.8                                                                                              | Ai                                             | r Changes 7.2                                                                 |                                                    | /hour                                                                     |                       |                   |                                                                                  |                                            |                |
| mean mooor concentration                                                                                                                                                                                                                                                                                                                | 0                                                                                                | ppm<br>ft%hr                                   |                                                                               | (iuc                                               | 4000                                                                      |                       |                   | _                                                                                |                                            |                |
| CO2 Generation Rate by<br>Non-Occupant Sources<br>teady State<br>After an infinite amount of tim<br>The CO2 level is<br>istantaneous Level                                                                                                                                                                                              | ne,<br>4659                                                                                      | ppm                                            |                                                                               | Concerningion (p                                   | 3000 ·<br>2000 ·<br>1000 ·                                                |                       |                   |                                                                                  |                                            |                |
| CO2 Generation Rate by<br>Non-Occupant Sources<br>iteady State<br>After an infinite amount of tim<br>The CO2 level is<br>istantaneous Level<br>At Time =                                                                                                                                                                                | 4659                                                                                             | ppm<br>min                                     |                                                                               | Concerclination (p                                 | 3000 -<br>2000 -<br>1000 -<br>0 -                                         | 0 50                  | 100               | 150 2                                                                            | 00 25                                      | 50 30          |
| CO2 Generation Rate by<br>Non-Occupant Sources<br>iteady State<br>After an infinite amount of tim<br>The CO2 level is<br>istantaneous Level<br>At Time =<br>The CO2 level is                                                                                                                                                            | 120<br>3396                                                                                      | ppm<br>min<br>ppm                              |                                                                               | Conternitation (p                                  | 3000 ·<br>2000 ·<br>1000 ·<br>0 ·                                         | 0 50                  | 100               | 150 2<br>me (min)                                                                | 00 25                                      | 50 30          |
| CO2 Generation Rate by<br>Non-Occupant Sources<br>lieady State After an infinite amount of tim The CO2 level is istantaneous Level At Time = The CO2 level is age 40.9, 1991 ASHRAE HV/                                                                                                                                                 | 4659<br>120<br>3396<br>AC Applications                                                           | ppm<br>min<br>ppm<br>s Hans                    | dbook                                                                         | Concentration fo                                   | 3000 -<br>2000 -<br>1000 -<br>0 -<br>Room                                 | 0 50<br>Concentratio  | 100<br>Th<br>on — | 150 2<br>me (min)<br>Steady State                                                | e Concentra                                | 50 30<br>ation |
| CO2 Generation Rate by<br>Non-Occupant Sources<br>Iteady State<br>After an infinite amount of tirr<br>The CO2 level is<br>istantaneous Level<br>At Time =<br>The CO2 level is<br>age 40.9, 1991 ASHRAE HV/<br>Quoting ASHRAE 62-1999 fro<br>ddendum 62f addresses a lat<br>indoor carbon dioxide (CO2)<br>uality and a contaminant with | 120<br>120<br>3396<br>AC Applications<br>or the Foreword<br>ck of clarity in A<br>its own health | ppm<br>min<br>ppm<br>s Hand<br>d sect<br>NSI/A | dbook<br>ion addemdum<br>ISHRAE Stand<br>d previously lei<br>tts, rather than | 62f page<br>and 62-19id<br>d many us<br>simply a u | 3000 -<br>2000 -<br>1000 -<br>0 -<br>Room<br>1)<br>89 that l<br>iseful in | 0 50<br>Concentration | 100<br>Ta<br>an - | 150 2<br>me (min)<br>Steady State<br>isunderstanc<br>a compreher<br>of human bio | e Concentra<br>dings regar<br>nsive indice | 50 30<br>ation |

Acetone Ammonia Benzene Carbon Formaldehyde Nicotine Hydrogen SulfideMethyl Alcohol Phenol TVOC Monoxide L=ASHRAE Limit w/o=Without Dynamic Air Cleaners w=With Dynamic Air Cleaners



| Project Pamlico Cour                                  | ity School WSH   | IP-G2                           | Notes                                 | Seating              | g area - 202 peo                      | ple, 7.5cfm/  | person .06cf                 | im/sq. ft      |           |
|-------------------------------------------------------|------------------|---------------------------------|---------------------------------------|----------------------|---------------------------------------|---------------|------------------------------|----------------|-----------|
| Representative Optima Engin                           | eering           |                                 |                                       | Play At              | ea - 100 people                       | u cim/pers    | on, .aucimiso                | , п.           |           |
| /entilated-Space                                      |                  |                                 |                                       | 5                    | -Occupants                            |               |                              |                |           |
| Building Size Area                                    | 7650             | ft <sup>3</sup> Ceiling Height3 | 2                                     | ] ft [               | Number of Oc                          | cupants       | 302                          | person(s)      |           |
| Total Volume of Space                                 | 244800           | ft <sup>3</sup> 810.6           | ft³/persor                            |                      | Level of Phys                         | ical Activity | Moderate E                   | xercise        |           |
| Total Airflow In, Vs                                  | 15450            | cfm 51.16                       | cfm/perse                             | on                   | Respiratory F                         | low           | 64                           | cfm/person     |           |
| Ventilation Airflow, Vo                               | 1510             | cfm 5                           | cfm/perse                             | on                   | CO2 Generat                           | ion           | 2.5                          | ft³/hr/perso   | п         |
| Recirculation Airflow, RVr                            | 13940            | cfm 46.16                       | cfm/perse                             | on                   |                                       |               |                              |                |           |
| Recirculation Flow Factor, R                          | 0.9023           |                                 |                                       |                      |                                       |               |                              |                |           |
| Ventilation Effectiveness, Ev                         | 0.8              | Air Changes 3.78                | 7                                     | /hour                |                                       |               |                              |                |           |
| CO2 Sources in Ventilated Sp<br>Outdoor Concentration | 400              | ppm                             |                                       | 12000                | C02                                   | Concentrati   | on vs. Time                  |                |           |
| Initial Indoor Concentration                          | 400              | ppm                             |                                       | 10000                |                                       |               |                              |                |           |
| CO2 Generation Rate by<br>Non-Occupant Sources        | 0                | ft³/hr                          | (wcd)                                 | 8000                 |                                       |               |                              |                | -         |
| Steady State                                          |                  |                                 | - inite                               | 6000                 |                                       | <b></b>       |                              |                |           |
| After an infinite amount of tin                       | ne,              |                                 | Centr                                 | 4000                 |                                       | $\sim$        |                              |                |           |
| The CO2 level is                                      | 11850            | ppm                             | වි                                    | 2000                 |                                       |               |                              |                |           |
| nstantaneous Level                                    |                  |                                 | i i                                   | 0                    |                                       |               |                              |                |           |
| At Time =                                             | 120              | min                             |                                       | · ·                  | 0 50                                  | 100           | 150 2                        | 00 250         | 300       |
| The CO2 level is                                      | 5516             | ppm                             |                                       |                      |                                       | т             | me (min)                     |                |           |
|                                                       |                  |                                 | ' -                                   | Room                 | Concentration                         | -             | Steady State                 | Concentration  |           |
| Page 40.9, 1991 ASHRAE HV                             | AC Applications  | s Handbook                      |                                       |                      |                                       |               |                              |                |           |
| Quoting ASHRAE 62-1999 fro                            | om the Forework  | d section addemdum              | 62f page                              | 1)<br>10 Hood I      | as contributed to                     |               | a understand                 | an marting     | the circu |
| of indoor carbon dioxide (CO2                         | ) levels. The st | andard previously led           | ind 62-196<br>I many us<br>simply a u | ers to o<br>seful in | include that CO<br>ficator of the cor | 2 was itself  | a comprehen<br>of human bioe | sive indicator | of indoo  |
| quality and a contaminant with                        | rits own nearth  | impacto, ratiler traine         |                                       |                      |                                       |               |                              |                |           |

AirQ Indoor Air Quality Design and Analysis Project Pamlico County School WSHP-D Notes 7.5 CFM/Person 0.18 CFM/SF Representative Optima Engineering 
 entilated Space
 Building Size
 Area 3750
 ft<sup>3</sup> Ceiling Height 25
 ft
 Number of Occupants
 180
 person(s)

 Total Volume of Space
 93750
 ft<sup>3</sup>
 520.8
 ft<sup>3</sup>/person
 Level of Physical Activity
 Sedentary, at Ease

 Respiratory Flow
 16
 cfm/person
 cfm/person Ventilation Airflow, Vo cfm/person CO2 Generation 0.62 ft³/hr/person cfm 39.44 cfm/person Recirculation Airflow, RVr Recirculation Flow Factor, R Air Changes 5.12 Ventilation Effectiveness, Ev .8 Smoking-- Eiltration-Smoking in Space Filter Efficiency 0 % Percent of people smoking 0 Cigarettes / hour / person 0 Molecula Dynamic Typical Outsid ASHRAE Limi Steady State Conc Weight Air Concentration (ppm) With Dynamic Air Without Dynamic / (g/mole) Cleaner (ppm) Cleaners and Typ. Cleaners and Typ. Cleaners and Typ. Generation Smoking Rate per Generation Person (Ib/min Rate 1 cig/hour (Ib/min) contaminant side Conc. (pprodutside Conc. (p 50 25 17 27 5 30 25 Hydrogen Sulfid \* Indicates level exceeds 80% of ASHRAE limit

Acetone Ammonia Benzene Carbon Formaldehyde Nicotine L=ASHRAE Limit w/o=Without Dynamic Air Cleaners w=With Dynamic Air Cleaners



Sheet No. 4 of 42



# 1 OVERALL FIRST FLOOR MECHANICAL PLAN 1" = 20'-0"

## <u>GENERAL NOTE</u>: OVERALL PLANS ARE FOR REFERENCE ONLY. REFER TO 1/8" SCALE PLANS FOR DETAILS

| RATED WALL LEGEND |                 |  |  |  |  |  |
|-------------------|-----------------|--|--|--|--|--|
| SYMBOL            | DESCRIPTION     |  |  |  |  |  |
|                   | 1 HR FIRE RATED |  |  |  |  |  |
|                   | 2 HR FIRE RATED |  |  |  |  |  |



1 OVERALL SECOND FLOOR MECHANICAL PLAN 1" = 20'-0"



## <u>GENERAL NOTE</u>: OVERALL PLANS ARE FOR REFERENCE ONLY. REFER TO 1/8" SCALE PLANS FOR DETAILS

| RATED WALL LEGEND |                 |  |  |  |  |  |
|-------------------|-----------------|--|--|--|--|--|
| SYMBOL            | DESCRIPTION     |  |  |  |  |  |
|                   | 1 HR FIRE RATED |  |  |  |  |  |
|                   | 2 HR FIRE RATED |  |  |  |  |  |





1 OVERALL ROOF MECHANICAL PLAN 1" = 20'-0"



## <u>GENERAL NOTE</u>: OVERALL PLANS ARE FOR REFERENCE ONLY. REFER TO 1/8" SCALE PLANS FOR DETAILS

| RATED WALL LEGEND |                 |  |  |  |  |  |
|-------------------|-----------------|--|--|--|--|--|
| SYMBOL            | DESCRIPTION     |  |  |  |  |  |
|                   | 1 HR FIRE RATED |  |  |  |  |  |
|                   | 2 HR FIRE RATED |  |  |  |  |  |







BOYS 1122

# RATED WALL LEGEND SYMBOL DESCRIPTION 1 HR FIRE RATED 2 HR FIRE RATED <u>KEYPLAN</u>









THIS DRAWING IS AN INSTRUMENT OF SERVICE. THE DRAWING AND THE INFORMATION THEREON IS THE PROPERTY OF OPTIMA ENGINEERING, P.A. ANY REPRODUCTION, ALTERATION, OR USE FOR OTHER THAN THE INTENDED PROJECT, WITHOUT THE WRITTEN CONSENT OF OPTIMA ENGINEERING, P.A. IS EXPRESSLY FORBIDDEN. COPYRIGHT © OPTIMA ENGINEERING, P.A. 2023, ALL RIGHTS RESERVED.





24/2024 12:02:08 PM Autodesk Docs://Pamlico High School 6-12/23-0082R\_Pamlico HS\_MEPFPT\_R23.rvt











| RATE  | D W      | ALL LEGEND     |   |  |  |  |  |  |  |
|-------|----------|----------------|---|--|--|--|--|--|--|
| SYMB  | OL       | DESCRIPTIO     | N |  |  |  |  |  |  |
|       |          | 1 HR FIRE RATE | Ð |  |  |  |  |  |  |
|       |          | 2 HR FIRE RATE | Ð |  |  |  |  |  |  |
|       | <u>K</u> | <u>EYPLAN</u>  |   |  |  |  |  |  |  |
| <br>C | D        |                |   |  |  |  |  |  |  |
| В     | A        | E              | F |  |  |  |  |  |  |

















THIS DRAWING IS AN INSTRUMENT OF SERVICE. THE DRAWING AND THE INFORMATION THEREON IS THE PROPERTY OF OPTIMA ENGINEERING, P.A. ANY REPRODUCTION, ALTERATION, OR USE FOR OTHER THAN THE INTENDED PROJECT, WITHOUT THE WRITTEN CONSENT OF OPTIMA ENGINEERING, P.A. IS EXPRESSLY FORBIDDEN. COPYRIGHT © OPTIMA ENGINEERING, P.A. 2023, ALL RIGHTS RESERVED.

# RATED WALL LEGEND SYMBOL DESCRIPTION 1 HR FIRE RATED 2 HR FIRE RATED <u>KEYPLAN</u> В Ε F A







THIS DRAWING IS AN INSTRUMENT OF SERVICE. THE DRAWING AND THE INFORMATION THEREON IS THE PROPERTY OF OPTIMA ENGINEERING, P.A. ANY REPRODUCTION, ALTERATION, OR USE FOR OTHER THAN THE INTENDED PROJECT, WITHOUT THE WRITTEN CONSENT OF OPTIMA ENGINEERING, P.A. IS EXPRESSLY FORBIDDEN. COPYRIGHT © OPTIMA ENGINEERING, P.A. 2023, ALL RIGHTS RESERVED.

















В



Ε



![](_page_15_Figure_5.jpeg)

# 24/2024 12:04:43 PM Autodesk Docs://Pamlico High School 6-12/23-0082R Pamlico HS MEPFPT R23.rvt

![](_page_16_Figure_1.jpeg)

| RATED WALL LEGEND |    |                |    |  |  |  |  |  |  |
|-------------------|----|----------------|----|--|--|--|--|--|--|
| SYMBO             | CL | DESCRIPTIO     | N  |  |  |  |  |  |  |
|                   |    | 1 HR FIRE RATE | ED |  |  |  |  |  |  |
|                   |    | 2 HR FIRE RATE | ED |  |  |  |  |  |  |
|                   | K  | EYPLAN         |    |  |  |  |  |  |  |
| <br>C             | D  | ŀ              |    |  |  |  |  |  |  |
| В                 | A  | E              | F  |  |  |  |  |  |  |

![](_page_16_Figure_4.jpeg)

![](_page_16_Figure_5.jpeg)

![](_page_17_Figure_0.jpeg)

![](_page_17_Figure_1.jpeg)

THIS DRAWING IS AN INSTRUMENT OF SERVICE. THE DRAWING AND THE INFORMATION THEREON IS THE PROPERTY OF OPTIMA ENGINEERING, P.A. IS EXPRESSLY FORBIDDEN. COPYRIGHT © OPTIMA ENGINEERING, P.A. IS EXPRESSLY FORBIDDEN. COPYRIGHT © OPTIMA ENGINEERING P.A. 2023, ALL RIGHTS RESERVED.

|                              |                                                                                                                      | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40-F<br>35RODM<br>04<br>50-F | WSHP-1-2.3<br>24x24<br>10"Ø<br>10"Ø<br>10"Ø<br>340-F<br>10"Ø<br>10"Ø<br>10"Ø<br>10"Ø<br>10"Ø<br>10"Ø<br>10"Ø<br>10"Ø | -1<br>-1<br>-24x24 10"Ø<br>-10"Ø<br>-1065-V<br>10"Ø<br>-10"Ø<br>-10"Ø<br>-14x14<br>HS CLASSROOM<br>-10"Ø<br>-10"Ø<br>-14x14<br>HS CLASSROOM<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø<br>-10"Ø | 1<br>24x24<br>10"Ø<br>1065-V<br>10"Ø<br>10"Ø<br>10"Ø<br>14x14<br>10"Ø<br>10"Ø<br>10"Ø<br>10"Ø<br>260-F<br>260-F<br>260-F<br>260-F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1<br>24x24<br>10"Ø<br>10"Ø<br>340-F<br>10"Ø<br>340-F<br>10"Ø<br>14x14<br>10"Ø<br>2112<br>10"Ø<br>260-F<br>260-F<br>260-F<br>260-F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                              | Lugud Lugud                                                                                                          | Luci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | COLLAB 5<br>2111<br>TO BE INSTALLED<br>PLATFORM<br>OMS. SEE<br>AL DRAWINGS<br>24x16<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12'0<br>10'12 | 10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0<br>10"0 |
| TO <u>GRR-4</u>              |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

GENERAL NOTE: 1. M.C. TO COORDINATE FINAL MECHANICAL DUCT AND PIPING SIZE/LOCATION PENETRATIONS THROUGH HOLLOW CORE FLOOR WITH G.C. PRIOR TO ISSUANCE OF HOLLOW CORE SHOP DRAWINGS 2. COORDINATE ALL DUCT RUNS WITH FINAL STRUCTURAL LAYOUT THROUGH IN-BETWEEN ROOF TRUSSES

![](_page_17_Figure_7.jpeg)

![](_page_17_Picture_9.jpeg)

![](_page_18_Figure_0.jpeg)

GENERAL NOTE:

1. M.C. TO COORDINATE FINAL MECHANICAL DUCT AND PIPING SIZE/LOCATION PENETRATIONS THROUGH HOLLOW CORE FLOOR WITH G.C. PRIOR TO ISSUANCE OF HOLLOW CORE SHOP DRAWINGS 2. COORDINATE ALL DUCT RUNS WITH FINAL STRUCTURAL LAYOUT THROUGH IN-

BETWEEN ROOF TRUSSES

![](_page_18_Figure_7.jpeg)

![](_page_18_Picture_9.jpeg)

![](_page_19_Figure_0.jpeg)

![](_page_19_Picture_6.jpeg)

![](_page_19_Figure_7.jpeg)

![](_page_20_Figure_0.jpeg)

GENERAL NOTE: 1. M.C. TO COORDINATE FINAL MECHANICAL DUCT AND PIPING SIZE/LOCATION PENETRATIONS THROUGH HOLLOW CORE FLOOR WITH G.C. PRIOR TO ISSUANCE OF HOLLOW CORE SHOP DRAWINGS 2. COORDINATE ALL DUCT RUNS WITH FINAL STRUCTURAL LAYOUT THROUGH IN-BETWEEN ROOF TRUSSES

![](_page_20_Figure_5.jpeg)

\_\_\_\_\_

\_\_\_\_\_

\_\_\_\_\_

\_\_\_\_\_

\_\_\_\_\_

![](_page_20_Picture_7.jpeg)

![](_page_20_Figure_8.jpeg)

![](_page_21_Figure_0.jpeg)

![](_page_21_Figure_2.jpeg)

![](_page_21_Figure_4.jpeg)

![](_page_21_Figure_5.jpeg)

![](_page_22_Figure_0.jpeg)

![](_page_22_Figure_2.jpeg)

(16)

\_\_\_\_\_

\_\_\_\_\_

\_\_\_\_\_

\_\_\_\_\_

![](_page_22_Figure_4.jpeg)

![](_page_22_Figure_5.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_23_Figure_4.jpeg)

![](_page_23_Figure_6.jpeg)

![](_page_24_Figure_0.jpeg)

![](_page_24_Figure_1.jpeg)

THIS DRAWING IS AN INSTRUMENT OF SERVICE. THE DRAWING AND THE INFORMATION THEREON IS THE PROPERTY OF OPTIMA ENGINEERING, P.A. ANY REPRODUCTION, ALTERATION, OR USE FOR OTHER THAN THE INTENDED PROJECT, WITHOUT THE WRITTEN CONSENT OF OPTIMA ENGINEERING, P.A. IS EXPRESSLY FORBIDDEN. COPYRIGHT © OPTIMA ENGINEERING, P.A. 2023, ALL RIGHTS RESERVED.

T

![](_page_24_Figure_7.jpeg)

![](_page_24_Figure_8.jpeg)

![](_page_25_Figure_0.jpeg)

4/2024 12:08:12 PM Autodesk Docs://Pamlico High School 6-12/23-0082R\_Pamlico HS\_MEPFPT\_R2

![](_page_25_Figure_3.jpeg)

![](_page_25_Figure_4.jpeg)

![](_page_26_Figure_0.jpeg)

![](_page_26_Figure_2.jpeg)

![](_page_26_Figure_4.jpeg)

![](_page_26_Figure_5.jpeg)

![](_page_27_Figure_0.jpeg)

![](_page_27_Figure_1.jpeg)

THIS DRAWING IS AN INSTRUMENT OF SERVICE. THE DRAWING AND THE INFORMATION THEREON IS THE PROPERTY OF OPTIMA ENGINEERING, P.A. ANY REPRODUCTION, ALTERATION, OR USE FOR OTHER THAN THE INTENDED PROJECT, WITHOUT THE WRITTEN CONSENT OF OPTIMA ENGINEERING, P.A. IS EXPRESSLY FORBIDDEN. COPYRIGHT © OPTIMA ENGINEERING, P.A. 2023, ALL RIGHTS RESERVED.

| RATE  | D W/      | ALL LEGEND      |
|-------|-----------|-----------------|
| SYMBO | )L        | DESCRIPTION     |
|       |           | 1 HR FIRE RATED |
|       |           | 2 HR FIRE RATED |
|       | <u>KI</u> | EYPLAN          |
| C     | D         |                 |

A E

В

![](_page_27_Figure_5.jpeg)

![](_page_27_Figure_6.jpeg)

![](_page_28_Figure_0.jpeg)

![](_page_28_Figure_1.jpeg)

![](_page_28_Figure_2.jpeg)

![](_page_28_Figure_4.jpeg)

![](_page_28_Figure_5.jpeg)

![](_page_29_Figure_0.jpeg)

![](_page_29_Figure_2.jpeg)

![](_page_29_Figure_4.jpeg)

![](_page_29_Figure_5.jpeg)

![](_page_30_Figure_0.jpeg)

![](_page_30_Figure_2.jpeg)

![](_page_30_Figure_3.jpeg)

![](_page_31_Figure_0.jpeg)

GENERAL NOTE: 1. M.C. TO COORDINATE FINAL MECHANICAL DUCT AND PIPING SIZE/LOCATION PENETRATIONS THROUGH HOLLOW CORE FLOOR WITH G.C. PRIOR TO ISSUANCE OF HOLLOW CORE SHOP DRAWINGS

![](_page_31_Figure_3.jpeg)

![](_page_31_Picture_6.jpeg)

![](_page_31_Figure_7.jpeg)

![](_page_32_Figure_0.jpeg)

GENERAL NOTE: 1. M.C. TO COORDINATE FINAL MECHANICAL DUCT AND PIPING SIZE/LOCATION PENETRATIONS THROUGH HOLLOW CORE FLOOR WITH G.C. PRIOR TO ISSUANCE OF HOLLOW CORE SHOP DRAWINGS

![](_page_32_Figure_5.jpeg)

\_\_\_\_\_

\_\_\_\_\_

\_\_\_\_\_

![](_page_32_Picture_8.jpeg)

![](_page_32_Figure_9.jpeg)

![](_page_33_Figure_0.jpeg)

THIS DRAWING IS AN INSTRUMENT OF SERVICE. THE DRAWING AND THE INFORMATION THEREON IS THE PROPERTY OF OPTIMA ENGINEERING, P.A. IS EXPRESSLY FORBIDDEN. COPYRIGHT © OPTIMA ENGINEERING, P.A. IS EXPRESSLY FORBIDDEN. COPYRIGHT © OPTIMA ENGINEERING, P.A. 2023, ALL RIGHTS RESERVED.

## UNDISTRIBUTED SOIL TEMPERATURE - 66.5 DEG F UTILIZING THE FOLLOWING VARIABLES: PEAK ZONE COOLING LOAD - (557,512) MBH PEAK ZONE HEATING LOAD - (515,344) MBH BASIC WELLFIELD GRID - 3 CIRCUITS, 10 WELLS PER CIRCUIT WELL SEPARATION DISTANCE - 20' MINIMUM BORE DIAMETER - 5" $\emptyset$ BORE DEPTH - 300' U-TUBE DIAMETER - 1" HDPE, SDR-11 GROUT CONDUCTIVITY - 1.2 BTU/HR\*FT\*°F PEAK ZONE COOLING LOAD - (737,787) MBH PEAK ZONE HEATING LOAD - (713,238) MBH BASIC WELLFIELD GRID - 3 CIRCUITS, 10 WELLS PER CIRCUIT WELL SEPARATION DISTANCE - 20' MINIMUM BORE DIAMETER - 5" $\emptyset$ BORE DEPTH - 300' U-TUBE DIAMETER - 1" HDPE, SDR-11 GROUT CONDUCTIVITY - 1.2 BTU/HR\*FT\*°F PEAK ZONE COOLING LOAD - (731,262) MBH PEAK ZONE HEATING LOAD - (703,431) MBH BASIC WELLFIELD GRID - 3 CIRCUITS, 10 WELLS PER CIRCUIT WELL SEPARATION DISTANCE - 20' MINIMUM BORE DIAMETER - 5" $\emptyset$ BORE DEPTH - 300' U-TUBE DIAMETER - 1" HDPE, SDR-11 GROUT CONDUCTIVITY - 1.2 BTU/HR\*FT\*°F PEAK ZONE COOLING LOAD - (638,310) MBH PEAK ZONE HEATING LOAD - (572,482) MBH BASIC WELLFIELD GRID - 3 CIRCUITS, 10 WELLS PER CIRCUIT WELL SEPARATION DISTANCE - 20' MINIMUM BORE DIAMETER - 5"Ø BORE DEPTH - 300' U-TUBE DIAMETER - 1" HDPE, SDR-11 GROUT CONDUCTIVITY - 1.2 BTU/HR\*FT\*°F PEAK ZONE COOLING LOAD - (691,750) MBH PEAK ZONE HEATING LOAD - (840,783) MBH BASIC WELLFIELD GRID - 3 CIRCUITS, 10 WELLS PER CIRCUIT WELL SEPARATION DISTANCE - 20' MINIMUM BORE DIAMETER - 5" $\emptyset$ BORE DEPTH - 300' U-TUBE DIAMETER - 1" HDPE, SDR-11 GROUT CONDUCTIVITY - 1.2 BTU/HR\*FT\*°F PEAK ZONE COOLING LOAD - (359,112) MBH PEAK ZONE HEATING LOAD - (449,197) MBH BASIC WELLFIELD GRID - 2 CIRCUITS, 11 WELLS PER CIRCUIT WELL SEPARATION DISTANCE - 20' MINIMUM BORE DIAMETER - 5"Ø BORE DEPTH - 300' U-TUBE DIAMETER - 1" HDPE, SDR-11 GROUT CONDUCTIVITY - 1.2 BTU/HR\*FT\*°F PEAK ZONE COOLING LOAD - (588,000) MBH PEAK ZONE HEATING LOAD - (784,400) MBH BASIC WELLFIELD GRID - 3 CIRCUITS, 30 WELLS PER CIRCUIT WELL SEPARATION DISTANCE - 20' MINIMUM BORE DIAMETER - 5" $\emptyset$ BORE DEPTH - 300' U-TUBE DIAMETER - 1" HDPE, SDR-11 GROUT CONDUCTIVITY - 1.2 BTU/HR\*FT\*°F PEAK ZONE COOLING LOAD - (96,034) MBH PEAK ZONE HEATING LOAD - (88,914) MBH BASIC WELLFIELD GRID - 1 CIRCUITS, 8 WELLS PER CIRCUIT WELL SEPARATION DISTANCE - 20' MINIMUM BORE DIAMETER - 5" $\emptyset$ BORE DEPTH - 300' U-TUBE DIAMETER - 1" HDPE, SDR-11 GROUT CONDUCTIVITY - 1.2 BTU/HR\*FT\*°F

AS A VALUE ENGINEERING OPTION, ALTERNATE WELLFIELD LAYOUTS MAY BE SUMBITTED DURING THE BIDDING PROCESS UTILIZING DIFFERENT COMBINATIONS OF THE VARIABLES, PROVIDED ALL NORTH CAROLINA STATE REGULATIONS ARE MET. CONTRACTOR SHALL SUBMIT FULL CALCULATIONS USING ALTERNATIVE METHODS FOR REVIEW AND APPROVAL BY THE MECHANICAL ENGINEER. ALTERNATE WELLFIELD DESIGNS MUST HAVE SIMILAR STAGING CAPACITY (DESIGN HAS 7 STAGES WITH 14.3% TOTAL LOAD CAPACITY EACH). WELLFIELD SUBSTITUTIONS, LIKE EQUIPMENT SUBSTITUTIONS, REQUIRE A 2-WEEK PRIOR APPROVAL BEFORE BID DAY. SHOULD PUMPING SYSTEM HEAD REQUIREMENTS AND/OR HORSEPOWERS CHANGE, OR ANY OTHER BUILDING SIDE CHANGE RESULT FROM REDESIGN OF THE WELLFIELD, ANY ADDITIONAL COSTS (INCLUDING ELECTRICAL CHANGES AND SITE CHANGES) SHALL BE THE RESPONSIBILITY OF THE MECHANICAL

![](_page_33_Picture_6.jpeg)

![](_page_33_Picture_7.jpeg)

...Becoming the Leading Designer of

Sheet No. 34 of 42

![](_page_34_Figure_0.jpeg)

| RATED WALL LEGEND |                 |
|-------------------|-----------------|
| SYMBOL            | DESCRIPTION     |
|                   | 1 HR FIRE RATED |
|                   | 2 HR FIRE RATED |

![](_page_34_Figure_4.jpeg)

![](_page_35_Figure_0.jpeg)

![](_page_35_Figure_1.jpeg)

2 MECH LOFT M3000 ENLARGED MECHANICAL PIPING PLAN

![](_page_35_Figure_4.jpeg)

OPTIMA# 23-0082R

![](_page_36_Figure_0.jpeg)

![](_page_36_Figure_1.jpeg)

E -----

THIS DRAWING IS AN INSTRUMENT OF SERVICE. THE DRAWING AND THE INFORMATION THEREON IS THE PROPERTY OF OPTIMA ENGINEERING, P.A. ANY REPRODUCTION, ALTERATION, OR USE FOR OTHER THAN THE INTENDED PROJECT, WITHOUT THE WRITTEN CONSENT OF OPTIMA ENGINEERING, P.A. IS EXPRESSLY FORBIDDEN. COPYRIGHT © OPTIMA ENGINEERING, P.A. 2023, ALL RIGHTS RESERVED.

![](_page_36_Figure_6.jpeg)

2 MECH LOFT M3100 ENLARGED MECHANICAL PIPING PLAN 1/4" = 1'-0"

| RATED W | ALL LEGEND      |  |
|---------|-----------------|--|
| SYMBOL  | DESCRIPTION     |  |
|         | 1 HR FIRE RATED |  |
|         | 2 HR FIRE RATED |  |

![](_page_36_Figure_10.jpeg)

![](_page_37_Figure_0.jpeg)

![](_page_38_Figure_0.jpeg)

![](_page_38_Figure_5.jpeg)

OPTIMA# 23-0082R

Sheet No. 39 of 42

![](_page_39_Figure_0.jpeg)

OPTIMA# 23-0082R

Sheet No. 40 of 42

**SEQUENCE OF OPERATION - MECHANICAL SYSTEMS** 

SHALL BE DDC/ELECTRONIC WITH ELECTRIC ACTUATION OF ALL VALVES AND DAMPERS. CONTROL SYSTEM SHALL BE BACNET OR LONMARK COMPATIBLE.

<u>GENERAL:</u>

BUILDING AUTOMATION SYSTEM (BAS) SHALL PROVIDE PROGRAMMED/TIMED OPERATION OF HVAC SYSTEM AND SYSTEM COMPONENTS BY PLACING THE SYSTEM IN "OCCUPIED" OR "UNOCCUPIED" MODES BASED ON THE OWNERS OPERATING SCHEDULE. BAS SHALL BE WEB (IP) BASED TO ALLOW INTERNET ACCESS FOR REMOTE OPERATION OF SYSTEM. BAS SHALL ALLOW GLOBAL OPERATION OF COOLING, HEATING, CO2, AND HUMIDITY SETPOINTS. BAS SHALL ALSO ALLOW EITHER ZONE BY ZONE OR GLOBAL OVERRIDE OF SYSTEM OPERATION WHILE IN THE UNOCCUPIED MODE. OVERRIDE SHALL ACTIVATE ALL LIGHTS, RECEPTACLES, AND HVAC SYSTEM EQUIPMENT, INCLUDING CENTRAL PLANT, REQUIRED TO MAINTAIN "OCCUPIED" SPACE CONDITIONS IN THE OVERRIDE ZONE FOR A TIME PERIOD OF 2 HOURS, TIME PERIOD SHALL BE ADJUSTABLE THROUGH THE BUILDING AUTOMATION SYSTEM.

A COMPLETE AND OPERATIONAL DDC CONTROL SYSTEM (BAS) SHALL BE INSTALLED IN ACCORDANCE WITH THE SPECIFICATIONS (SECTION 230900) AND AS INTENDED ON THESE PLANS. ALL CONTROLS

**THERMOSTATS** THERMOSTATS FOR WSHP UNITS SHALL BE PROVIDED WHERE INDICATED ON THE DRAWINGS, AND PER THE SPECIFICATIONS. THERMOSTATS SHALL HAVE ROTARY SWITCH ADJUSTMENT WITH NUMERICAL INDICATION, INITIALLY SET IN THE OCCUPIED MODE FOR COOLING TO 75° AND HEATING TO 70°. THERMOSTATS SHALL HAVE A 3° RANGE IN WHICH THEY ARE SATISFIED (IF SET TO 70°, SATISFIED ANYWHERE BETWEEN 68.5° AND 71.5°). ROTARY SWITCH SHALL HAVE THE CAPABILITY TO ADJUST THE HEATING AND COOLING SETPOINTS BY 3° IN EITHER DIRECTION, BUT MAINTAIN A MINIMUM 4° SPREAD BETWEEN THE HEATING AND COOLING SETPOINT. UNOCCUPIED SETTINGS SHALL BE 85° COOLING AND 60° HEATING. THERMOSTAT SHALL HAVE PUSHBUTTON OVERRIDE TO PLACE ONLY THAT ZONE INTO THE OCCUPIED MODE FOR TWO HOURS. LOFT WSHP SETPOINTS SHALL BE 80° COOLING AND 60° HEATING, ONLY TEMPORARILY CHANGING TO OCCUPIED SETPOINTS FOR A TWO HOUR DURATION IF THE PUSHBUTTON OVERRIDE IS ACTIVATED.

OCCUPIED SETBACK MODE SHALL BE ENABLED DURING THE OCCUPIED MODE IF THE OCCUPANCY SENSOR DE-ENERGIZES THE LIGHTS IN THE ROOM. OCCUPIED SETBACK MODE SHALL DRIFT THE COOLING AND HEATING SETPOINTS BY 3° EACH WAY (COOLING TO 78° AND HEATING TO 67°). OCCUPIED MODE IS RESTORED WHEN OCCUPANCY SENSOR RE-ENERGIZES THE LIGHTS.

## CO2 SENSORS

CO2 SENSORS SHALL BE PROVIDED WHERE INDICATED ON THE DRAWINGS, SEQUENCES OF OPERATION, AND PER THE SPECIFICATIONS. CO2 SENSORS INSTALLED IN ROOMS VENTILATED 'DCV' UNITS SHALL MONITOR CO2 LEVELS IN THESE ROOMS AND REPORT BACK TO THE BAS. SHOULD THE CO2 LEVEL IN A SPACE EXCEED 1500 PPM DURING UNOCCUPIED TIMES FOR A CONTINUOUS 15 MINUTE INTERVAL, ASSOCIATED DOAS UNIT SHALL BE ENERGIZED UNTIL PPM HOLDS BELOW 1500 PPM FOR A CONTINUOUS 15 MINUTE INTERVAL. SENSOR SHALL ALARM BAS SHOULD CO2 LEVELS EXCEED 2500 PPM AT ANY TIME. CO2 SENSORS IN LOBBY, DINING, AND GYMNASIUMS SHALL CONTROL DEMAND CONTROL VENTILATION SEQUENCE AS OUTLINED.

## ENERGY RECOVERY VENTILATORS (ERV):

WHEN PLACED IN THE OCCUPIED MODE, ENERGY RECOVERY VENTILATORS (ERVS) SHALL BE INDEXED "ON". UNITS SHALL BE ALLOWED TO START FOLLOWING A FIVE MINUTE DELAY. SUPPLY FAN, EXHAUST FAN, AND ENERGY RECOVERY WHEEL ARE ACTIVATED.

IN THE UNOCCUPIED MODE, UNIT SHALL REMAIN OFF UNLESS COMMANDED ON BY THE ZONE IS SCHEDULED ON VIA THE DDC SYSTEM OVERRIDE PANEL.

DUCT SMOKE DETECTOR INSTALLED IN THE EXHAUST DUCT SHALL SHUT DOWN UNIT AND ACTIVATE FIRE ALARM SYSTEM UPON DETECTION OF SMOKE

NOTE: COORDINATE EXACT SEQUENCE OF OPERATION FOR ENERGY RECOVERY UNITS WITH MANUFACTURER, MANUFACTURER AND ENGINEER TO APPROVE FINAL SEQUENCE PRIOR TO PROGRAMMING. BAS VENDOR SHALL VERIFY ALL OPERATION/MONITORING POINTS COMPATIBILITY AT SUBMITTAL PHASE.

SINGLE ZONE GEOTHERMAL WATER SOURCE HEAT PUMPS: UNITS SHALL BE PROVIDED WITH A TWO-WAY CONDENSER WATER CONTROL VALVE INTERLOCKED WITH THE HEAT PUMP COMPRESSOR (UNLESS NOTED OTHERWISE). ON A CALL FOR HEATING OR COOLING, VALVE SHALL OPEN TO THE UNIT AND HEAT PUMP HEATING/COOLING SYSTEM SHALL START ON A TWO MINUTE DELAY. WHILE IN THE UNOCCUPIED MODE, THE UNIT SHALL CYCLE AS NOTED ABOVE TO MAINTAIN SETBACK TEMPERATURES. IF ACTIVATED DURING THE UNOCCUPIED MODE, THE UNIT SHALL RUN FOR A MINIMUM OF 20 MINUTES AND SHALL NOT BE ALLOWED TO RESTART FOR A MINIMUM OF FIVE MINUTES FOLLOWING SHUT-DOWN.

A CENTRAL TIMED OVERRIDE PANEL SHALL BE LOCATED IN THE ADMIN AREA. TO EMPORARILY PLACE ANY ZONE INTO THE OCCUPIED MODE. WHEN PLACED IN OVERRIDE, UNIT SHALL OPERATE AS IF IN THE OCCUPIED MODE.

UNITS EQUIPPED WITH VARIABLE SPEED COMPRESSORS AND FANS SHALL UTILIZE THEIR INTERNAL CONTROLS TO MODULATE COMPRESSOR AND FAN STAGES TO MAINTAIN SPACE TEMPERATURE

UNITS SHALL BE PROVIDED WITH A WALL MOUNTED DDC SENSOR FOR SPACE TEMPERATURE CONTROL. WHILE IN THE OCCUPIED MODE THE SUPPLY FAN, CONDENSER WATER CONTROL VALVE, AND HEAT PUMP HEATING/COOLING SYSTEM SHALL CYCLE ON UPON A CALL FOR HEATING OR COOLING AS REQUIRED TO MAINTAIN SPACE TEMPERATURE. SENSOR SHALL ALSO SEND A SIGNAL TO ITS ZONE DEDICATED OUTSIDE AIR SYSTEM TO INDICATE STATUS AS HEAT, COOL, OR SATISFIED.

FOR UNITS PROVIDED WITH MOTORIZED OUTSIDE AIR DAMPERS (INDICATED BY 'DCV' IN EQUIPMENT SCHEDULE), DAMPER SHALL BE CLOSED WHEN IN THE UNOCCUPIED MODE. WHEN PLACED INTO THE OCCUPIED MODE BY THE BAS, OUTSIDE AIR DAMPER SHALL REMAIN CLOSED FOR MORNING WARM-UP IF SPACE TEMPERATURE IS BELOW SETPOINT. ONCE THE SPACE TEMPERATURE SETPOINT IS REACHED, THE OUTSIDE AIR DAMPER SHALL OPEN TO THE MINIMUM POSITION (OCC MIN OA CFM AS INDICATED IN WSHP SCHEDULE), AND SHALL REMAIN OPEN WHILE IN THE OCCUPIED MODE. MOTORIZED DAMPER SHALL VARY THE VOLUME OF OUTSIDE AIR BASED ON CO2 LEVEL AS MEASURED BY A SPACE OR DUCT MOUNTED CO2 SENSOR. OUTSIDE AIR DAMPER SHALL MODULATE OPEN IF CO2 READING RISES ABOVE 500 PPM ABOVE OUTSIDE AIR CO2 LEVEL, DAMPER SHALL MODULATE CLOSED UNTIL MINIMUM POSITION IS REACHED. BAS SHALL CONTINUALLY MONITOR THE AMOUNT OF OUTSIDE AIR PROVIDED TO EACH ZONE, AND ALARM CENTRAL BAS IF CO2 SENSOR READING IS ABOVE 1000 PPM.

FOR UNITS WITH HUMIDITY CONTROLS (SHOWN WITH HOT GAS REHEAT 'HGR' IN WSHP SCHEDULE), WITH SYSTEM IN OCCUPIED OR UNOCCUPIED MODE, HUMIDITY CONTROL SYSTEM SHALL BE CAPABLE OF BEING ACTIVATED. UNDER NORMAL OPERATION, UNIT SHALL BE CONTROLLED AS OUTLINED ABOVE. IF SPACE HUMIDITY REACHES 60% RH IN THE OCCUPIED MODE OR 65% IN THE UNOCCUPIED MODE (ADJUSTABLE), HUMIDITY CONTROL SEQUENCE SHALL BE ENERGIZED THROUGH THE DDC SYSTEM. UNIT OUTSIDE AIR DAMPER SHALL CLOSE TO MINIMUM POSITION. CONDENSER WATER CONTROL VALVE SHALL OPEN AND UNIT COMPRESSORS SHALL BE MODULATED TO REHEAT AIR TO MAINTAIN SPACE CONDITIONS AS REQUIRED. WHEN SPACE HUMIDITY DROPS BELOW 55% RH IN THE OCCUPIED MODE OR 60% IN THE UNOCCUPIED MODE, BAS SHALL DEACTIVATE HUMIDITY CONTROL SEQUENCE, AND CONTROL OF THE UNITS SHALL REVERT BACK TO NORMAL OPERATION. IF SPACE HUMIDITY REACHES 65% IN THE OCCUPIED MODE OR 70% IN UNOCCUPIED MODE, AND ALARM SHALL BE SENT TO CENTRAL BAS.

NON-CLASSROOM UNIT: (UNITS WITH O.A./RETURN AIR MIXING BOXES): WHEN PLACED IN THE OCCUPIED MODE BY THE BAS, THE UNITS SHALL BE INDEXED ON. UNITS SHALL START ON A FIVE MINUTE DELAY RELATIVE TO THE START OF THE WSHP LOOP PUMP. WHILE IN OCCUPIED MODE, THE SUPPLY FAN SHALL RUN CONTINUOUSLY AND THE CONDENSER WATER CONTROL VALVE AND HEAT PUMP COOLING/HEATING SYSTEM SHALL CYCLE AS REQUIRED TO MAINTAIN SPACE TEMPERATURE.

WHILE IN THE UNOCCUPIED MODE, THE UNIT FAN SHALL BE OFF AND SHALL ENERGIZE ONLY WITH A CALL FOR HEATING OR COOLING AS REQUIRED TO MAINTAIN SETBACK TEMPERATURE. IF ACTIVATED DURING THE UNOCCUPIED MODE, THE UNIT SHALL RUN FOR A MINIMUM OF FIVE MINUTES FOLLOWING SHUT-DOWN.

FOR UNITS EQUIPPED WITH VARIABLE FREQUENCY DRIVE FOR THE SUPPLY FAN, FAN SHALL START AT LOW SPEED (30%). ON A RISE IN TEMPERATURE ABOVE SETPOINT, THE CONDENSER WATER CONTROL VALVE SHALL OPEN, THE FIRST STAGE OF HEAT PUMP COOLING SHALL ACTIVATE, AND DX COIL LOWER SECTION RETURN AIR MOTORIZED DAMPER (INTERLOCED WITH UNIT COMPRESSOR STAGE 1) SHALL OPEN. ON A CONTINUOUS RISE IN SPACE TEMPERATURE, VARIABLE FREQUENCY DRIVE SHALL INCREASE FAN SPEED, HEAT PUMP SHALL ACTIVATE SECOND STAGE OF COOLING, AND DX COIL UPPER SECTION RETURN AIR MOTORIZED DAMPER (INTERLOCKED WITH UNIT COMPRESSOR STAGE 2) SHALL OPEN AS NECESSARY TO MAINTAIN DISCHARGE TEMPERATURE, UNTIL SPACE TEMPERATURE IS SATISFIED. AS THE SPACE TEMPERATURE DROPS BELOW SETPOINT, THE SUPPLY FAN SPEED SHALL RESET FROM MAXIMUM TO MINIMUM. AS THE SPACE TEMPERATURE CONTINUES TO DROP, THE CONDENSER WATER CONTROL VALVE SHALL OPEN, THE FIRST STAGE OF HEAT PUMP HEATING SHALL ACTIVATE, AND DX COIL LOWER SECTION RETURN AIR MOTORIZED DAMPER SHALL OPEN. ON A CONTINUED DROP IN SPACE TEMPERATURE, VARIABLE FREQUENCY DRIVE SHALL INCREASE FAN SPEED, HEAT PUMP SHALL ACTIVATE SECOND STAGE OF HEATING, AND DX COIL UPPER SECTION RETURN AIR MOTORIZED DAMPER SHALL OPEN AS NECESSARY TO MAINTAIN DISCHARGE TEMPERATURE, UNTIL SPACE TEMPERATURE IS SATISFIED.

FOR UNITS PROVIDED WITH MOTORIZED OUTSIDE AIR DAMPERS (INDICATED BY 'DCV' IN EQUIPMENT SCHEDULE), DAMPER SHALL BE CLOSED WHEN IN THE UNOCCUPIED MODE. WHEN PLACED INTO THE OCCUPIED MODE BY THE BAS, OUTSIDE AIR DAMPER SHALL REMAIN CLOSED FOR MORNING WARM-UP IF SPACE TEMPERATURE IS BELOW SETPOINT. ONCE THE SPACE TEMPERATURE SETPOINT IS REACHED, THE OUTSIDE AIR DAMPER SHALL OPEN TO THE MINIMUM POSITION (OCC MIN OA CFM AS INDICATED IN WSHP SCHEDULE), AND SHALL REMAIN OPEN WHILE IN THE OCCUPIED MODE. MOTORIZED DAMPER SHALL VARY THE VOLUME OF OUTSIDE AIR BASED ON CO2 LEVEL AS MEASURED BY A SPACE OR DUCT MOUNTED CO2 SENSOR. OUTSIDE AIR DAMPER SHALL MODULATE OPEN IF CO2 READING RISES ABOVE 500 PPM ABOVE OUTSIDE AIR CO2 LEVEL, DAMPER SHALL MODULATE CLOSED UNTIL MINIMUM POSITION IS REACHED. BAS SHALL CONTINUALLY MONITOR THE AMOUNT OF OUTSIDE AIR PROVIDED TO EACH ZONE, AND ALARM CENTRAL BAS IF CO2 SENSOR READING IS ABOVE 1000 PPM.

FOR UNITS WITH HUMIDITY CONTROLS (SHOWN WITH HOT GAS REHEAT 'HGR' IN WSHP SCHEDULE, AND HUMIDISTATS INSTALLED IN THEIR ZONES), WITH SYSTEM IN OCCUPIED OR UNOCCUPIED MODE, HUMIDITY CONTROL SYSTEM SHALL BE CAPABLE OF BEING ACTIVATED. UNDER NORMAL OPERATION, UNIT SHALL BE CONTROLLED AS OUTLINED ABOVE. IF SPACE HUMIDITY REACHES 60% RH IN THE OCCUPIED MODE OR 65% IN THE UNOCCUPIED MODE (ADJUSTABLE), HUMIDITY CONTROL SEQUENCE SHALL BE ENERGIZED THROUGH THE DDC SYSTEM. UNIT OUTSIDE AIR DAMPER SHALL CLOSE TO MINIMUM POSITION. CONDENSER WATER CONTROL VALVE SHALL OPEN AND UNIT COMPRESSORS SHALL BE MODULATED TO REHEAT AIR TO MAINTAIN SPACE CONDITIONS AS REQUIRED. WHEN SPACE HUMIDITY DROPS BELOW 55% RH IN THE OCCUPIED MODE OR 60% IN THE UNOCCUPIED MODE, BAS SHALL DEACTIVATE HUMIDITY CONTROL SEQUENCE, AND CONTROL OF THE UNITS SHALL REVERT BACK TO NORMAL OPERATION. IF SPACE HUMIDITY REACHES 65% IN THE OCCUPIED MODE OR 70% IN UNOCCUPIED MODE, AND ALARM SHALL BE SENT TO CENTRAL BAS.

## **GYMNASIUM WSHP STAGING**

GYMNASIUM SHALL BE STAGED SUCH THAT G1 SHALL ACT AS THE FIRST STAGE OF HEATING AND COOLING, AND LOW OCCUPANCY CONSTANT VENTILATION DURING OCCUPIED TIMES. GI SUPPLY FAN SHALL RUN CONTINUOUSLY IN THE OCCUPIED MODE AND COMPRESSORS SHALL CYCLE AS NEEDED FOR HEATING AND COOLING. G2 SHALL ACT AS THE SECOND STAGE OF HEATING, COOLING, DEHUMIDIFICATION, AND VENTILATION, OPERATING AS OUTLINED FOR NON-CLASSROOM UNITS (WITH O.A./RETURN AIR MIXING BOXES). THERMOSTAT SETPOINTS FOR G2 SHALL BE SET 2° HOTTER/COLDER THAN SETPOINTS FOR PRIMARY UNIT G1, AND UNIT SHALL ONLY BE ACTIVATED UPON A CALL FOR HEATING AND COOLING FROM THE THERMOSTAT, BY THE CO2 SENSOR INSTALLED IN THE SPACE UTILIZING DEMAND CONTROL VENTILATION AS DESCRIBED IN THE SEQUENCE, OR BY THE SPACE MOUNTED HUMIDISTAT ACTIVIATING THE DEHUMIDIFICATION SEQUENCE.

HVAC SCHEDULING INITIAL SCHEDULES OF OPERATION SHALL BE COORDINATED AND CONFIRMED BY THE OWNER, AND PROGRAMMED BY THE CONTROLS CONTRACTOR. MODIFICATION OF SCHEDULES SHALL BE A PART OF REQUIRED OWNER TRAINING. DISCREET SCHEDULES SHALL BE PROVIDED FOR EACH DEDICATED OUTSIDE AIR UNIT, EACH INDIVIDUAL CLASSROOM WING, AUDITORIUM, STAGE, ADMINISTRATION AREA, MEDIA CENTER, CAFETERIA, KITCHEN AREA, AND GYMNASIUM.

SCHOOL CALENDAR SHALL BE PROGRAMMED INTO THE BAS SUCH THAT THE SYSTEMS REMAIN UNOCCPUIED ON DAYS THE SCHOOL IS CLOSED AND ON TEACHER WORKDAYS.

ENERGY RECOVERY VENTILATOR (ERV) UNITS SHALL OPERATE IN THE OCCUPIED MODE FROM OPENING BELL TO CLOSING BELL.

ADMINISTRATION AREA SHALL REMAIN IN THE OCCPUIED MODE DURING THE SUMMER, EXACT HOURS TO BE COORDINATED WITH THE OWNER. REMAINING WSHP'S SHALL BE INITIALLY SET TO BE IN THE OCCUPIED MODE FROM 30 MINUTES BEFORE THE OPENING BELL TO 30 MINUTES PRIOR TO THE CLOSING BELL, UNTIL MODIFIED BY START/STOP OPTIMIZATION. AFTER HOURS OPERATION FOR ALL ZONES SHALL BE COORDINATED WITH THE OWNER WITH INPUT FROM THE KITCHEN, ATHLETIC, LIBRARY, AND FINE ARTS STAFF.

# OVERRIDE PANEL

A CENTRAL OVERRIDE PANEL SHALL BE LOCATED IN THE ADMIN ZONE. PANEL SHALL BE PROVIDED WITH TIMERS, LABELS, AND LED INDICATOR LIGHT FOR EACH AREA SERVED. SOFTWARE SHALL BE PROGRAMMED FOR FULLY FUNCTIONAL OVERRIDE, TO SET HVAC EQUIPMENT, RECEPTACLES, AND LIGHTING INTO THE OCCUPIED MODE FOR A SET PERIOD OF TIME. ALL OVERRIDES SHALL ALSO HAVE REMOTE CAPABILITIES THRU IP BASED ACCESS.

PANEL SHALL INCLUDE THE DISCREET ZONES FOR EACH INDIVIDUAL CLASSROOM WING, ADMINISTRATION AREA, CAFETERIA, LOBBY, KITCHEN AREA, AND GYMNASIUMS. CLASSROOM WING ACTIVATION SHALL ALSO PLACE ENERGY RECOVERY VENTILATION (ERV) SYSTEMS SERVING THAT WING INTO THE OCCUPIED MODE.

# START/STOP OPTIMIZATION

BAS SHALL PROVIDE START/STOP OPTIMIZATION (SSO) FOR ALL EQUIPMENT AND SYSTEMS. SSO SHALL BE CAPABLE OF LEARNING BUILDING THERMAL CHARACTERISTICS AND RESPOND TO VARIABLE CONDITIONS. SSO SHALL START/STOP CONTROLLED EQUIPMENT AS LATE AS POSSIBLE PRIOR TO OCCUPIED TIME PERIOD AND AS EARLY AS POSSIBLE PRIOR TO UNOCCUPIED TIME PERIOD. SSO SHALL BE CALCULATED BASED ON OUTDOOR AIR TEMPERATURE, ZONE TEMPERATURES, AND CONTROL SETPOINT/SETBACK TEMPERATURES.

## SMOKE DETECTORS

SMOKE DETECTOR SHALL BE PROVIDED IN THE RETURN DUCT PRIOR TO THE OUTSIDE AIR DUCT CONNECTION. DETECTOR SHALL INTERFACE WITH FIRE ALARM SYSTEM AND SHUT-DOWN UNIT FANS UPON ACTIVATION. WHERE APPLICABLE, DETECTORS SHALL BE INSTALLED IN THE LOWER SECTION OF THE RETURN AIR PLENUM BUILT BEHIND THE UNIT (SEE MECHANICAL DRAWINGS FOR DETAILS).

## IDF/MDF ROOM SPLIT SYSTEMS:

UNITS SHALL PROVIDE COOLING IN DATA/SERVER ROOMS ON A CONTINUOUS BASIS. SUPPLY FAN AND COOLING CYCLE SHALL CYCLE WITH A CALL FOR COOLING TO MAINTAIN ROOM TEMPERATURE SETPOINT OF 75° F. BAS SHALL MONITOR SYSTEM STATUS AND SHALL ALSO MONITOR ROOM TEMPERATURE. AN ALARM SHALL BE ACTIVATED IF THE ROOM TEMPERATURE RISES ABOVE 85° F.

## UNIT HEATERS

UNIT HEATERS SHALL BE PROVIDED WITH A LOW VOLTAGE THERMOSTAT. UNIT HEAT AND FAN SHALL BE ENERGIZED WHEN SPACE TEMPERATURE FALLS BELOW SETPOINT. INITIAL SYSTEM SETPOINTS SHALL BE 50° F.

## EXHAUST FANS

CONTROL DEVICES (SWITCHES, THERMOSTATS, INTERLOCKS, ETC.) SHALL BE PROVIDED AS REQUIRED TO COMPLY WITH INTENT OF OPERATION AS INDICATED ON THE FAN SCHEDULE. ELECTRICAL AND MECHANICAL ROOM EXHAUST FANS SHALL BE SET TO MAINTAIN 85° F.

### DOMESTIC HOT WATER SYSTEM BAS SHALL HAVE GLOBAL CONTROL OVER DOMESTIC WATER HEATING SYS

WATER HEATERS SHALL CYCLE ON AND OFF BASED ON THIER TANK TEMPE TO MAINTAIN 140° FOR WH-1 AND WH-2. AN ALARM SHALL BE GENERATE EITHER TANK DEVIATE FROM SETPOINT BY 10° EITHER HIGH OR LOW. AN A SHALL ALSO BE GENERATED SHOULD THE DOMESTIC HWS TEMPERATURE FROM SETPOINT BY 10° EITHER HIGH OR LOW. CIRCULATION PUMPS SHAL ON A SCHEDULED BASIS BASED ON BUILDING OCCUPANCY. THE PUMPS S CAPABLE OF OPERATING ON SEPARATE SCHEDULES, SHOULD THE KITCHEN DIFFER FROM THE ENTIRE BUILDING. A TEMPERATURE SENSOR SHALL BE IN THE END OF THE LINE CAPABLE OF OVERRIDING THE PUMP SHOULD TH TEMPERATURE FALL BELOW 105° FOR CP-1 OR 130° FOR CP-2. BAS SHALL A MONITOR BOTH DOMESTIC HWR TEMPERATURES AND DOMESTIC WATER TEMPERATURE FOR TRACKING PURPOSES. COORDINATE ALL TEMPERATUR LOCATIONS WITH PLUMBING CONTRACTOR.

## WATER HEATER ROOM OXYGEN DEPLETION PROVIDE A CARBON MONOXIDE SENSOR IN THE WATER HEATER ROOM,

THE CENTRAL DDC SYSTEM TO ALARM OXYGEN DEPLETION. THE SENSOR ACTIVATE AN AUDIBLE AND VISUAL ALARM INSIDE THE ROOM, ACTIVATE 1 VENTILATION FAN, ALARM SHALL BE SENT TO THE DDC IF CO LEVELS EXCE OVER A CONTINUOUS 8 HOUR PERIOD, OR IF THEY EXCEED 100 PPM OVER CONTINUOUS 60 SECOND PERIOD.

A PUSH BUTTON EMERGENCY GAS SHUTOFF SWITCH SHALL BE PROVIDED INDICATED MECHANICAL ROOMS TO CLOSE A SOLENOID VALVE IN THE GA SERVING DOMESTIC WATER HEATERING EQUIPMENT. ACTIVATION OF THE SHALL CLOSE THE GAS VALVE AND ALARM THE CENTRAL BAS (VALVE AND P.C.)

- SEE SPECIFICATIONS FOR ADDITIONAL REQUIREMENTS. ALL CONTROL SETPOINTS SHALL BE ADJUSTABLE BY THE USER SCHOO MAINTENANCE DEPARTMENT. INDICATED SCHEDULES AND SETPOIN USED FOR ORIGINAL SYSTEM SET-UP. ANY CHANGES IN SETPOINT SET FOR INTENDED SYSTEM OPERATION SHALL BE APPROVED BY THE ENG SHALL BE DISCREETLY INDICATED ON THE AS-BUILT DRAWINGS.
- IONIZATION TYPE DUCT SMOKE DETECTORS SHALL BE PROVIDED BY T CONTRACTOR, INSTALLED IN THE DUCT BY THE MECHANICAL CONTRA WIRED TO SHUT DOWN THE UNIT AND FOR FIRE ALARM INTERFACE BY ELECTRICAL CONTRACTOR.
- . ELECTRICAL CONTRACTOR SHALL PROVIDE A DEDICATED 120V CIRCUIT CONTROL POWER. CONTROLS CONTRACTOR SHALL EXTEND 120V POV TO CONTROL PANELS, DAMPER ACTUATORS, TRANSFORMERS, ETC. AS OPERATION OF CONTROL SYSTEM. BAS CONTRACTOR SHALL PROVIDE BAS SHALL ALLOW GLOBAL OPERATION OF HEAT PUMP SETPOINTS. . ALL FACTORY INSTALLED EQUIPMENT SAFETIES (HIGH LIMIT, LOW LIMI
- HIGH TEMP., LOW FLOW, HEAD PRESSURE, ETC.) SHALL BE ACTIVE TO F EQUIPMENT PER MANUFACTURER'S RECOMMENDATIONS. BAS SHALL EQUIPMENT SAFETIES AND ACTIVATE ALARMS TO REPORT ACTIVATION SAFETIES. MECHANICAL CONTRACTOR SHALL COORDINATE ALL EQUIPMENT
- COMMUNICATION/INTEGRATION REQUIREMENTS PRIOR TO EQUIPME EQUIPMENT SUBMITTALS SHALL BE REVIEWED AND APPROVED BY THE VENDOR (APPROVAL SHALL BE INDICATED ON THE SUBMITTAL) PRIOR TO THE DESIGN TEAM FOR APPROVAL. ANY SUBMITTALS RECEIVED W CONTROLS VENDOR APPROVAL WILL BE RETURNED WITHOUT REVIEW

| STEM.<br>ERATURES,<br>ED SHOULD<br>ALARM<br>DEVIATE<br>LL OPERATE<br>SHALL BE<br>N SCHEDULE<br>MOUNTED<br>HE LOOP<br>ALSO<br>S SUPPLY<br>RE SENSOR |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---|
| FIED INTO<br>SHALL<br>THE                                                                                                                          |   |
|                                                                                                                                                    |   |
| AT THE<br>AS LINE<br>E SWITCH<br>O SWITCH BY                                                                                                       |   |
|                                                                                                                                                    |   |
|                                                                                                                                                    | 1 |
|                                                                                                                                                    |   |
|                                                                                                                                                    |   |
|                                                                                                                                                    |   |
|                                                                                                                                                    |   |
|                                                                                                                                                    |   |
|                                                                                                                                                    |   |
|                                                                                                                                                    |   |
|                                                                                                                                                    |   |
|                                                                                                                                                    |   |
| DL STAFF, AND<br>TS SHOULD BE<br>TTINGS REQUIRED<br>GINEER AND                                                                                     |   |
| THE ELECTRICAL<br>ACTOR AND<br>BY THE                                                                                                              |   |
| IT IN A J-BOX FOR<br>WER FROM J-BOX<br>S REQUIRED FOR<br>E ALL 120V                                                                                |   |
| IIT, LOW TEMP.,<br>PROTECT<br>L MONITOR ALL<br>DN OF EQUIPMENT                                                                                     |   |
| ENT SUBMITTALS.<br>IE CONTROLS<br>R TO SUBMITTING<br>VITHOUT<br>V.                                                                                 |   |
|                                                                                                                                                    |   |
|                                                                                                                                                    |   |
|                                                                                                                                                    |   |
|                                                                                                                                                    |   |
|                                                                                                                                                    |   |
|                                                                                                                                                    |   |
|                                                                                                                                                    |   |
|                                                                                                                                                    |   |
|                                                                                                                                                    |   |
|                                                                                                                                                    |   |
|                                                                                                                                                    |   |

![](_page_40_Picture_75.jpeg)

Sheet No. 41 of 42

| SYSTEM,       |
|---------------|
| APPARATUS, OR |
| AREA POINT    |
| DESCRIPTION   |

| Geothermal Plant  |
|-------------------|
| eothermal Supply  |
| eothermal Return  |
| Geothermal Supply |
| eothermal Return  |
| Geothermal Supply |
| Geothermal Return |
| Geothermal Supply |
| Geothermal Return |
| eothermal Supply  |
| Geothermal Return |
| Seothermal Supply |
| Geothermal Return |
| eothermal Supply  |
| Geothermal Return |
| eothermal Supply  |
| eothermal Return  |
|                   |

<u>WSHP</u> Supply Fan Supply VFD on/off Supply VFD Speed Supply VFD Status

CW Valve Compressor #1 Compressor #2 & RA D Space Temp Space CO2 Space RH

Supply Temp

Over-ride Setpoint Adjust Return Air Smoke (by OA Damper (damper l Hot Gas Reheat Valve Reversing Valve Safety Condensate Overflow

Local Occupancy Circulator Pump(s) **Refrigerant Detection** <u>ERVs</u>

Supply Fan Exhaust Fan Heat Wheel Exh Fan Exhaust Damper Return Damper Entering Supply Air Te Leaving Supply Air Ter Leaving Supply Air RH Entering Exhaust Air Te Entering Exhaust Air R Override Exhaust Air Smoke

<u>Fans</u> **Core Toilet Fans** Misc. Fans

Supply Filter Status Exhaust Filter Status

Split Systems (Server/D Supply Fan DX Compressor Space Temp Supply Temp Override Setpoint Adjust

<u>Misc. Points</u> Freezer Temp Cooler Temp OA Temp OA CO2 Dew Point Domestic Water Meter

NG Gas Meter Fire Alarm Status Kitchen Hood/MAU/K

GENERAL NOTE: INPUT/OUTPUT SUM SHALL BE RESPONSIE WITH THE SPECIFICA

# S LIST - INPUT/OUTPUT SUMMARY

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NALOG ALARMS PROGRAMS GENERAL<br>PROGRAMS GENERAL<br>DI AVAIO<br>DI AVAI |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Image of the second s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| dec. order       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n       n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     . <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Image: Problem       Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Synthem       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| inp       X       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| mp       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| A       Component       Component       A <th< td=""><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| H       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Image:         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Image: Solution of the state of the sta         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Image: Section of the section of th         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Image: state in the state          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Participant       Product       Product <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| er X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MMARY IS A GENERAL LIST OF CONTROL POINTS REQUIRED FOR THE OPERATION OF THE MECHANICAL SYSTEM. IN ADDITION TO CONTROL POINTS INDICATED, THE CONTROLS CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| IBLE FOR PROVIDING ADDITIONAL POINTS AS REQUIRED FOR OPERATION OF THE MECHANICAL SYSTEM AS SPECIFIED AND OUTLINED IN THE SEQUENCE OF OPERATION, AND TO COMPLY<br>ATIONS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

![](_page_41_Picture_19.jpeg)