SECTION 230000 - MECHANICAL

<u>Mechanical</u> work shall be defined by drawings numbered with the prefix "M-", the general provision of the Contract including General Conditions and Supplementary Conditions, and Division-23 Mechanical Specifications.

Engineer of Record for Division 23 is Connor Greene, PE, CBHF Engineers, PLLC, 2246 Yaupon Drive, Wilmington, NC 28401.

SECTION 23 0000 GENERAL MECHANICAL

PART 1 GENERAL

1.01 SCOPE OF WORK

- A. The work shall include furnishing, installing and testing the equipment and materials specified in other sections of the Mechanical Specifications and shown on the Drawings. It is the intent of these Specifications that the mechanical systems shall be suitable in every way for the intended usage. All material and all work which may be reasonably implied as being incidental to the work of this Division shall be furnished at no extra cost.
- B. Instructions to Bidders, General Conditions of the Contract, and Supplementary General Conditions Specifications Sections bound herewith are a component part of Division 23 specifications. Comply with all provisions, details and instructions of these sections in the accomplishment of work covered under Division 23.
- C. Furnish all labor, materials and equipment and incidentals required to make ready for use complete mechanical systems as shown on the Drawings and specified herein.
- D. Where Sub-Contracts are used to perform portions of the work, division of labor between sub trades is the responsibility of the Contractor.
- E. The general scope work includes, but is not limited to, furnishing, coordinating, and installing the following:
 - 1. Heating, air conditioning and ventilation equipment.
 - 2. Ductwork, air distribution.
 - 3. HVAC piping, specialties and equipment.
 - 4. Controls and wiring.
 - 5. Commissioning, testing and balancing.
- F. Visit all areas of the site, buildings and structures (as applicable) in which work under these sections is to be performed. Inspect carefully the existing conditions prior to bidding. Bid submission is evidence that the Contractor has examined the site and existing conditions, understands conditions under which the work will be performed, and takes full responsibility for complete knowledge of all factors governing the work.
- G. Schedule all service interruptions in existing facilities at the Owner's convenience with 24 hours (minimum) notice. Obtain prior approval for each interruption.
- H. Thoroughly test all mechanical systems at the completion of work and make any minor correction changes or adjustments necessary for all the proper functioning of the system and equipment. All workmanship shall be of the highest quality; substandard work will be rejected.
- I. Contractor shall submit phasing plans and coordinate with the owner and tenants to minimize disruption.
- J. Contractor shall submit a detailed phasing plan outlining the sequence of construction activities, including ceiling tile removal, mechanical system installation, and any required tenant relocations. This plan must be coordinated with the owner and tenants to minimize disruption to occupied spaces. The contractor is responsible for scheduling work during off-hours where possible and maintaining clear communication with the owner regarding any impacts to tenant

access and building operations. All phasing activities must be approved by the owner prior to commencing work.

K. The contractor shall take necessary precautions to protect existing infrastructure, including but not limited to lighting, ceiling tiles, and other equipment that will not be removed or replaced during construction. Protective coverings, dust barriers, and other suitable methods must be employed to ensure these items remain undamaged throughout the duration of the project. The contractor is responsible for maintaining the integrity of all non-removed items and shall promptly repair or replace any damaged components at no additional cost to the owner.

1.02 SUBMITTALS

- A. Procedures for Submittals: Submit all required documents and materials in accordance with the provisions outlined in the project's General and Supplemental General Conditions. Ensure submittals follow the specific guidelines provided in the contract documents and are approved by the project owner prior to proceeding with related work.
- B. Transmit each shop drawing submittal with provided Shop Drawing Submittal Cover Form, attached as Appendix B, for each item of equipment/material or each specification section/paragraph
- C. Clearly indicate proposed equipment and/or materials substitutions in shop drawings. Summarize all deviations from the specified quality, functionality, appearance or performance of proposed equipment and/or materials in the preface of each submittal. Include documentation to support deviations.
- D. Provide descriptive data on all materials and equipment as required to ascertain compliance with Specifications.
- E. Design layout shown on drawings is based on physical sizes of reputable equipment manufacturers. If equipment other than models indicated is installed, any resulting conflicts with space, maintenance access, clearances or codes are the responsibility of the Contractor to correct at his expense.
- F. Where specific models and manufacturers of materials and equipment are specified, substitutions as allowed by the specifications and State law will be considered. Substitutions must be equivalent in quality, function, suitability and arrangement to specified equipment. Architect/Engineer to have final authority as to equivalency of substitutions.
- G. Equipment model numbers noted in these specifications or on the drawings are intended to establish a minimum standard of quality and do not necessarily relate to specific options or arrangement as shown. Provide equipment with all standard features and optional features as stated and arranged as shown on the drawings.

1.03 REGULATORY REQUIREMENTS

- A. Perform Work in accordance with all applicable state and local codes, standards and regulations.
- B. Furnish all materials and labor which is be required for compliance with codes, standards and regulations, whether specifically mentioned in these specifications or shown on the drawings.

C. Obtain required construction permit from the authority having jurisdiction and arrange, at the proper time, for all inspections required by such authority. Pay all permit and inspection costs required.

1.04 COORDINATION OF WORK

- A. Contractor is responsible for coordination of work between trades. Provide fully complete and functional systems.
- B. Compare mechanical drawings and specifications with the drawings and specifications for other trades.
- C. Coordinate mechanical installation with the work of other trades. Report any pertinent discrepancies to the Engineer and obtain written instructions for any necessary revisions. Before starting any construction, make proper provisions to avoid interferences in a manner approved by the Engineer. No extras will be allowed for rework of uncoordinated installations.
- D. Determine exact route and location of each mechanical item prior to fabrication and/or installation. Adjust location of ducts, piping and equipment, etc., to accommodate interferences anticipated and encountered.
- E. Right of Way: General priority for right of way is as follows:
 - 1. Items located per regulatory requirement.
 - 2. Piping with pitch requirement (plumbing drains, etc.).
 - 3. Ductwork.
 - 4. Piping without pitch requirement.
 - 5. Electrical wiring (conduits, etc.).
- F. Arrange all work to permit removal (without damage to other parts) of any equipment requiring periodic replacement.
- G. Provide clearance and easy access to any equipment which requires periodic maintenance. Arrange ducts, piping and equipment to permit ready access to valves, cocks, traps, starters, motors, control components, etc., and to clear the opening of swinging doors and access panels.

1.05 EQUIPMENT AND MATERIALS (GENERAL)

- A. Provide all new materials unless specifically indicated otherwise.
- B. Manufacturers and models listed in drawings and specifications are used for layout and to convey to bidders the general style, type, character and quality of product desired. Listed examples are used only to denote the quality standard of product desired and are not intended to restrict bidders to a specific brand, make, manufacturer or specific name.
- C. Adjust layout, system connections and coordinate with other trades as required to properly install equivalent products.
- D. Where equivalent products are submitted, include all associated costs related to substitution in bid.
- E. Furnish materials bearing the manufacturer's name and trade name. Provide UL label where a UL standard has been established for the particular material.

- F. Furnish standard products of manufacturers regularly engaged in production of equipment types required for the work. Use the manufacturer's latest approved design.
- G. Use the same manufacturer for equipment and materials of the same general type throughout the work to obtain uniform appearance, operation and maintenance.
- H. Protect equipment and materials from dirt, water, chemical or mechanical injury and theft at all times during construction. Provide covers or shelter as required.
- I. If materials or equipment are damaged at any time prior to final acceptance of the work, repair such damage at no additional cost. If materials or equipment are damaged by water, provide replacement no additional cost.
- J. Follow manufacturer's directions completely in the delivery, storage, protection and installation of all equipment and materials. Notify the Engineer in writing of any conflicts between any requirements of the contract documents and manufacturer's directions. Obtain written instructions before proceeding with the work. The Contractor is responsible for correction of any work that does not comply with the manufacturer's directions or written instructions from the Engineer at no additional cost.
- K. Repair any damage to the factory-applied paint finish using touch-up paint furnished by the equipment manufacturer. Repaint the entire damaged panel or section to match the original finish, ensuring a seamless appearance, at no additional cost.

1.06 OPERATION AND MAINTENANCE MANUALS

A. Refer to individual mechanical sections for specific requirements.

1.07 PAINTING

A. Protect sensors, controllers, etc. against painting. Do not install thermostats, devices or trim until painting is complete.

1.08 LOCATIONS AND MEASUREMENTS

- A. Location of mechanical work is shown on the drawings as accurately as possible. Field-verify all measurements to ensure that the work suits the surrounding structure, trim, finishes and/or construction. Provide adjustment as necessary.
- B. Make minor relocations of work prior to installation as required or as directed by the Engineer at no additional cost.

1.09 SUPERVISION

- A. Contractor to provide an authorized and competent representative to constantly supervise the work from the beginning to completion and final acceptance. Insofar as possible, keep the same foreman and workmen throughout the project duration.
- B. Representatives of Engineer, Owner, and local inspection authorities will make inspections during the progress of the work. Contractor to accommodate such inspections and correct deficiencies noted.

1.10 QUALITY AND WORKMANSHIP

- A. Contractor to employ skilled tradesmen, laborers and supervisors. Final product to present a neat, well finished, and professional installation.
- B. Remove and replace any work considered substandard quality in the judgment of the Engineer.

1.11 CLOSING IN WORK

A. Do not cover up or enclose work until it has been inspected, tested and approved by authorities having jurisdiction over the work. Uncover any such work for inspection and/or test at no additional cost. Restore the work to its original condition after inspection and/or test at no additional cost.

1.12 CUTTING AND PATCHING

- A. Perform all cutting and patching necessary to install work under this Division.
- B. Perform cutting and patching in professional, workmanlike manner.
- C. Arrange work to minimize cutting and patching.
- D. Do not cut joists, beams, girders, columns or any other structural members without written permission from the Engineer.
- E. Cut opening only large enough to allow easy installation of piping, wiring or ductwork.
- F. Patching material to match material removed.
- G. Restore patched surface to its original appearance at completion of patching.
- H. Where waterproofed surfaces are patched, maintain integrity of waterproofing.
- I. Remove rubble and excess patching materials from the premises.

1.13 INTERPRETATION OF DRAWINGS

- A. Drawings and specifications under this Division are complementary each to the other. Provide any work specified herein and/or indicated on the drawings.
- B. Drawings are diagrammatic and indicate generally the location of fixtures, piping, devices, equipment, etc. Follow drawings as closely as possible, but arrange work to suit the finished surroundings and/or trim.
- C. The words "furnish", "provide", and/or "install" as used in these drawings and specifications are interpreted to include all material and labor necessary to complete the particular item, system, equipment, etc.
- D. Any omissions from either the drawings or specifications are unintentional. Contractor is responsible for notifying the Engineer of any pertinent omissions before submitting a bid. Complete and working systems are required, whether every small item of material is shown and specified or not.

1.14 ACCESSIBILITY

- A. Locate all equipment which must be serviced, operated, or maintained in fully accessible positions. Equipment to include, but not be limited to, valves, traps, cleanouts, motors, controllers, and dampers. If required for accessibility, furnish access doors for this purpose. Minor deviations from drawings may be made to allow for better accessibility. Lack of access doors on drawings does not relieve Contractor of responsibility to provide access doors, if needed to properly service equipment.
- B. Coordinate exact locations and size of access panels for each concealed device requiring service.
- C. Access panels: Steel construction with 16-gauge frames and 18-gauge panels, factory primed with rust inhibiting paint, finish paint by Contractor. Provide suitable UL listed doors where installed in rated construction.
- D. Coordinate access panel locations with architectural construction.
- E. Access panels are not required for access to work located above a lift-out "T" bar type ceiling.

1.15 ELECTRICAL WORK IN CONNECTION WITH MECHANICAL CONTRACTS

- A. Comply with all relevant electrical requirements. Any electrical work required for Division 23 that is not explicitly specified as the responsibility of another contractor shall be provided by the Division 23 Contractor.
- B. All electrical work performed Division 23 shall comply with relevant electrical specification requirements.
- C. Coordinate the electrical interface of supplied mechanical equipment with the electrical system. Electrical work for mechanical systems is based on the values shown on the mechanical drawings. The Division 23 Contractor is responsible for any costs associated with modifying the electrical work to accommodate equipment with electrical characteristics that differ from those scheduled.

1.16 MECHANICAL WORK IN CONNECTION WITH OTHER CONTRACTS

A. Provide mechanical services as required for items furnished by other contractors or vendors as shown on the Drawings. Actual requirements may vary from Drawings. Coordinate with equipment installed. Make final connections only after approval of the other contractor or vendor, in the contractor's or vendor's presence.

1.17 PROJECT RECORD DRAWINGS

- A. Submit in accordance with the provisions outlined in the project's General and Supplemental General Conditions. Ensure all submittals comply with the specific requirements provided in the contract documents and receive approval before proceeding with related work.
- B. As the work progresses, legibly record all field changes on a set of project contract drawings, herein after called the "record drawings."
- C. Record drawings shall accurately show the installed condition of mechanical work.

1.18 PHASING OF THE WORK

- A. Schedule work in accordance with the provisions outlined in the project's General and Supplemental General Conditions. Ensure the work schedule is coordinated with the project owner and follows the requirements set forth in the contract documents.
- B. The existing facilities will remain occupied by the staff throughout the project. As such, work will be done in phases and will require special effort by this contractor to allow the work to proceed in a timely manner. All work shall be coordinated with the owner/tenants and general contractor so as to minimize disruption of the owner's/tenant's use of the facilities and maintain construction sequence of the general contractor.
- C. Tenant Relocations: Coordinate with the owner and tenants to schedule any required relocations in advance, ensuring clear communication about timelines and impacts. Temporary access and accommodations must be provided where necessary.
- D. Ceiling Tile Removal and Protection: Schedule the removal and protection of ceiling tiles in phases, ensuring that areas not currently under construction remain undisturbed. In the event of tile damage, replacements must match the existing tiles as closely as possible.
- E. Mechanical Installations: Sequence work so that mechanical system installations, including ductwork, piping, and equipment, occur in conjunction with tenant relocations to avoid interference with occupied spaces.
- F. Fire-Rated Assemblies: Ensure that any work affecting fire-rated walls or ceilings is phased appropriately to maintain compliance with fire codes and standards throughout the construction process.
- G. Coordination with Other Trades: Align the phasing schedule with other trades to ensure work can be performed without delays or rework.
- H. Owner Communication: Regularly update the project owner on the progress of each phase and any potential schedule changes, allowing time for adjustments as needed.

1.19 PROJECT CLOSEOUT

A. Submit all required documents and materials in accordance with the provisions outlined in the General and Supplemental General Conditions of the project. Ensure all submittals meet the requirements specified in the contract documents and are approved before proceeding with related work.

PART 2 PRODUCTS (NOT USED)

PART 3 EXECUTION (NOT USED)

SECTION 23 0010 EXISTING CONDITIONS

PART 1 GENERAL

1.01 SCOPE OF WORK

A. Procedures for mechanical work in existing building.

1.02 RELATED WORK

- A. Conform to the project-specific requirements for cutting and patching and section 23 0020 for demolition. Ensure all demolition work, including cutting and patching, follows the approved construction methods and guidelines provided in the project documents. Coordinate with the project owner for any additional instructions or requirements related to demolition.
- B. Conduct work to minimize interference with adjacent and occupied building areas.
- C. Cease operations immediately if structure appears to be in danger and notify Engineer. Do not resume operations until directed.

PART 2 PRODUCTS

2.01 PATCHING MATERIALS

A. As specified in individual Sections.

PART 3 EXECUTION

3.01 PREPARATION

- A. Coordinate mechanical service interruptions with the Owner.
- B. Provide temporary and/or permanent mechanical as shown and/or as required by conditions to maintain existing systems in service during construction. Use hot-tapping valves if required.
- C. Existing Mechanical Systems: Maintain existing mechanical systems in service. Disable systems outside construction area only to make tie-ins or switchovers. Obtain permission from the Owner at least 24 hours before partially or completely disabling mechanical. Minimize duration. Make temporary connections as required to maintain service in areas adjacent to work area.
- D. Drawings are based on casual field observation and existing record documents. <u>Survey the affected areas before submitting bid proposal.</u> Report discrepancies to the Engineer before disturbing the existing installation.
- E. Field-verify existing conditions as related to interconnection of New Work. Determine exact methods of interface to obtain proper operation.

- F. Coordinate existing and New Work interface prior to beginning any work. Adjust work to suit existing conditions. Some deviations in plan layout vs. actual conditions should be expected.
- G. Provide, erect, and maintain temporary dust screens, safeguards, barricades, signage and similar measures, for protection of the public, Owner, Contractor's employees, and existing construction to remain. Provide protective barriers indicated in the contract drawings.

3.02 EXISTING CONDITIONS

- A. Verify existing conditions in field and determine which affect mechanical work. Secure utilities as required to prevent spills, leakage, etc.
- B. Protect existing work to remain. Do not cut or remove any structural members.
- C. Rework existing services to remain which interfere with new work.

SECTION 23 0020 MECHANICAL DEMOLITION

PART 1 GENERAL

1.01 SCOPE OF WORK

- A. Selective mechanical demolition.
- B. The contractor is responsible for all cutting, patching, and restoration work necessary to complete the installation of mechanical systems. All cutting and patching must be performed in a manner that minimizes damage to existing structures and systems. The contractor shall restore any affected areas to their original condition, ensuring compliance with applicable codes and standards. Any cutting and patching must be coordinated with the project owner and other trades to prevent interference with ongoing work or building operations.
- C. The contractor is responsible for performing all selective demolition necessary for the removal of existing mechanical systems as indicated in the project documents. Demolition must be executed in a controlled manner to avoid unnecessary damage to remaining structures and systems. The contractor shall protect adjacent areas and ensure proper disposal of demolished materials. All work must comply with applicable codes, standards, and safety requirements, and must be coordinated with the project owner to minimize disruption to building operations.

1.02 PROJECT CONDITIONS

- A. Conduct demolition to minimize interference with adjacent and occupied building areas.
- B. Cease operations immediately if structure appears to be in danger and notify Engineer. Do not resume operations until directed.

1.03 DEFINITIONS

- A. Remove: Detach items from existing construction and dispose of them off-site unless indicated to be salvaged or reinstalled.
- B. Remove and Salvage: Detach items from existing construction, in a manner to prevent damage, and deliver to Owner ready for reuse.
- C. Remove and Reinstall: Detach items from existing construction, in a manner to prevent damage, prepare for reuse, and reinstall where indicated.
- D. Existing to Remain: Leave existing items that are not to be removed and that are not otherwise indicated to be salvaged or reinstalled.
- E. Dismantle: To remove by disassembling or detaching an item from a surface, using gentle methods and equipment to prevent damage to the item and surfaces; disposing of items unless indicated to be salvaged or reinstalled.

PART 2 PRODUCTS

2.01 PATCHING MATERIALS

A. As specified in individual Sections.

PART 3 EXECUTION

3.01 PREPARATION

- A. Demolition Drawings are based on casual field observation and existing record documents. <u>Survey the affected areas before submitting bid proposal.</u> Report discrepancies to the Engineer before disturbing the existing installation.
- B. Provide, erect, and maintain temporary dust screens, safeguards, barricades, signage and similar measures, for protection of the public, Owner, Contractor's employees, and existing construction to remain. Provide protective barriers indicated in the contract drawings.
- C. Protect existing materials and existing improvements which are not to be demolished.
- D. Prevent movement of structure; provide temporary bracing and shoring required to ensure safety of existing structure.

3.02 DEMOLITION

- A. Demolish mechanical work as indicated. Secure utilities as required to prevent spills, leakage, etc.
- B. Demolish in an orderly and careful manner. Protect existing work to remain. Do not cut or remove any structural members.
- C. Terminate all demolition work in a neat finished manner.
- D. Conceal or enclose abandoned work within building construction except as specifically noted.
- E. Remove demolished materials from site except where specifically noted otherwise. Do not burn or bury materials on site.
- F. Remove materials as Work progresses. Upon completion of Work, leave areas in clean condition.
- G. Coordinate cutting and patching requirements.
- H. The contractor shall remove ceiling tiles as required for the demolition and installation of mechanical systems. During this process, care must be taken to protect all existing infrastructure, including lighting, electrical systems, and any other equipment that will remain in place. Protective coverings and dust barriers must be used to safeguard these items.
- I. When working around fire-rated walls, the contractor shall ensure that all fire ratings are maintained during the demolition phase. Any penetrations or alterations to fire-rated assemblies must be properly protected and restored to maintain the required fire-resistance ratings. The

contractor is responsible for verifying that fire-rated walls and barriers remain intact and compliant with applicable codes and standards throughout the demolition process.

SECTION 23 0513 COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT GENERAL

1.01 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.02 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 - 1. Motor controllers.
 - 2. Torque, speed, and horsepower requirements of the load.
 - 3. Ratings and characteristics of supply circuit and required control sequence.
 - 4. Ambient and environmental conditions of installation location.

PART 2 PRODUCTS

2.01 GENERAL MOTOR REQUIREMENTS

- A. Comply with NEMA MG 1 unless otherwise indicated.
- B. Comply with IEEE 841 for severe-duty motors.

2.02 MOTOR CHARACTERISTICS

- A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
- B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.03 POLYPHASE MOTORS

- A. Description: NEMA MG 1, Design B, medium induction motor. .
- B. Efficiency: Energy efficient, complying with NEMA Standard Publication General Specification for Consultants, Industrial and Municipal: NEMA Premium Efficiency Electric Motors (600 Volts or Less).
- C. Service Factor: 1.15.
- D. Multispeed Motors: Separate winding for each speed.

- E. Rotor: Random-wound, squirrel cage.
- F. Bearings: Re-greasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
- G. Temperature Rise: Match insulation rating.
- H. Insulation: Class F.
- I. Code Letter Designation:
 - 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 - 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.
- J. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.04 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

- A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.
- B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 - 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 - 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 - 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 - 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.
- C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

2.05 SINGLE-PHASE MOTORS

- A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 - 1. Permanent-split capacitor.
 - 2. Split phase.
 - 3. Capacitor start, inductor run.
 - 4. Capacitor start, capacitor run.
- B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.
- C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
- D. Motors 1/20 HP and Smaller: Shaded-pole type.
- E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation.

Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 EXECUTION (Not Applicable)

SECTION 23 0529 HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 GENERAL

1.01 SUMMARY

- A. Section Includes:
 - 1. Metal pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Thermal-hanger shield inserts.
 - 4. Equipment supports.

1.02 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.03 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.04 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

PART 2 PRODUCTS

2.01 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 - 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 - 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of[carbon steel.
- B. Copper Pipe Hangers:
 - 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
 - 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of copper-coated steel.

2.02 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and Ubolts.

2.03 THERMAL-HANGER SHIELD INSERTS

- A. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig minimum compressive strength and vapor barrier.
- B. Insulation-Insert Material for Hot Piping: ASTM C 552, Type II cellular glass with 100-psig minimum compressive strength.
- C. For Trapeze Systems: Insert and shield shall cover entire circumference of pipe.
- D. For Clevis Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- E. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.04 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.05 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

PART 3 EXECUTION

3.01 HANGER AND SUPPORT INSTALLATION

- A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- D. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- E. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- F. Install hangers and supports to allow controlled thermal movement of piping systems, to permit freedom of movement between pipe anchors.
- G. Install lateral bracing with pipe hangers and supports to prevent swaying.

- H. Install building attachments to structural steel. Install additional attachments at concentrated loads and at changes in direction of piping.
- I. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- J. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- K. Insulated Piping:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 - 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
- L. Fire-Rated Supports for Ducts and Refrigerant Piping:
 - 1. The contractor shall ensure that all supports used for fire-wrap ducts and refrigerant piping comply with fire-rated requirements. These supports must be rated and installed in accordance with the relevant fire protection standards and local building codes. Proper coordination is required to ensure that the integrity of fire-rated assemblies is maintained, including the use of approved materials and methods for hanging and supporting fire-wrapped ducts and piping.

3.02 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Provide lateral bracing, to prevent swaying, for equipment supports.

3.03 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:

- 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
- 2. Obtain fusion without undercut or overlap.
- 3. Remove welding flux immediately.
- 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.04 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.05 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizingrepair paint to comply with ASTM A 780.

3.06 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel pipe hangers and supports and metal trapeze pipe hangers and attachments for general service applications.
- F. Use copper-plated pipe hangers and copper attachments for copper piping and tubing.
- G. Use padded hangers for piping that is subject to scratching.
- H. Use thermal-hanger shield inserts for insulated piping and tubing.
- I. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.

- J. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
- K. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
 - 2. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 3. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 4. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 5. C-Clamps (MSS Type 23): For structural shapes.
- L. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- M. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

SECTION 23 0553 IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 GENERAL

1.01 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Pipe labels.

1.02 ACTION SUBMITTAL

A. Product Data: For each type of product indicated.

PART 2 PRODUCTS

2.01 EQUIPMENT LABELS

- A. Plastic Labels for Equipment:
 - 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
 - 2. Letter Color: White.
 - 3. Background Color: Black.
 - 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
 - 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 - 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 7. Fasteners: Stainless-steel rivets or self-tapping screws.
 - 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Label Content: Include equipment's Drawing designation or unique equipment number.
- C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.02 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

- C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings.
 - 1. Lettering Size: At least 1-1/2 inches high.

PART 3 EXECUTION

3.01 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.02 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

3.03 PIPE LABEL INSTALLATION

- A. Piping Color-Coding: ANSI/ASME A13.1.
- B. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.
- C. Pipe Label Color Schedule:
 - 1. Refrigerant and Condensate Piping: ANSI/ASME A13.1.

SECTION 23 0593 TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 GENERAL

1.01 SUMMARY

- A. Section Includes:
 - 1. Balancing Air Systems:
 - a. Constant-volume air systems.

1.02 DEFINITIONS

- A. AABC: Associated Air Balance Council.
- B. TAB: Testing, adjusting, and balancing.
- C. TABB: Testing, Adjusting, and Balancing Bureau.
- D. TAB Specialist: An entity engaged to perform TAB Work.

1.03 INFORMATIONAL SUBMITTALS

A. Certified TAB reports.

1.04 QUALITY ASSURANCE

- A. Certify TAB field data reports and perform the following:
 - 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 - 2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.
- B. TAB Report Forms: Use standard TAB contractor's forms approved by Construction Manager.
- C. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation."

PART 2 PRODUCTS (Not Applicable)

PART 3 EXECUTION

3.01 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.

HVAC Replacement Self Help Building

- B. Examine systems for installed balancing devices. Verify that locations of these balancing devices are accessible.
- C. Examine the approved submittals for HVAC systems and equipment.
- D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.
- E. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.
- F. Examine test reports specified in individual system and equipment Sections.
- G. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.
- H. Examine terminal units and verify that they are accessible and their controls are connected and functioning.
- I. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- J. Examine operating safety interlocks and controls on HVAC equipment.
- K. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.02 PREPARATION

- A. Prepare a TAB plan that includes strategies and step-by-step procedures.
- B. Complete system-readiness checks and prepare reports. Verify the following:
 - 1. Permanent electrical-power wiring is complete.
 - 2. Automatic temperature-control systems are operational.
 - 3. Equipment and duct access doors are securely closed.
 - 4. Balance, smoke, and fire dampers are open.
 - 5. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
 - 6. Windows and doors can be closed so indicated conditions for system operations can be met.

3.03 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance" and in this Section.
- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 - 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 - 2. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 23 0713 "Duct Insulation."

- C. Mark equipment and balancing devices with paint or other suitable, permanent identification material to show final settings.
- D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.04 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' "as-built" duct layouts.
- C. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.
- D. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.
- E. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- F. Verify that motor starters are equipped with properly sized thermal protection.
- G. Check dampers for proper position to achieve desired airflow path.
- H. Check for airflow blockages.
- I. Check condensate drains for proper connections and functioning.
- J. Check for proper sealing of air-handling-unit components.
- K. Verify that air duct system is sealed as specified in Section 23 3113 "Metal Ducts."

3.05 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 - 1. Measure total airflow.
 - a. Where sufficient space in ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow.
 - 2. Measure fan static pressures as follows to determine actual static pressure:
 - a. Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions.
 - b. Measure static pressure directly at the fan outlet or through the flexible connection.
 - c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions.
 - d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.
 - 3. Measure static pressure across each component that makes up an air-handling unit.

- a. Report the cleanliness status of filters and the time static pressures are measured.
- 4. Measure static pressures entering and leaving other devices under final balanced conditions.
- 5. Obtain approval from Construction Manager for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.
- 6. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.
- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.
 - 1. Measure airflow of submain and branch ducts.
 - a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.
 - 2. Measure static pressure at a point downstream from the balancing damper, and adjust volume dampers until the proper static pressure is achieved.
 - 3. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.
- C. Measure air outlets and inlets without making adjustments.
 - 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.
- D. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals.
 - 1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.
 - 2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.06 PROCEDURES FOR MOTORS

- A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 - 1. Manufacturer's name, model number, and serial number.
 - 2. Motor horsepower rating.
 - 3. Motor rpm.
 - 4. Efficiency rating.
 - 5. Nameplate and measured voltage, each phase.
 - 6. Nameplate and measured amperage, each phase.
 - 7. Starter thermal-protection-element rating.
- B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation.

Record observations including name of controller manufacturer, model number, serial number, and nameplate data.

3.07 PROCEDURES FOR CONDENSING UNITS

- A. Verify proper rotation of fans.
- B. Measure entering- and leaving-air temperatures.
- C. Record compressor data.

3.08 TOLERANCES

- A. Set HVAC system's air flow rates and water flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
 - 2. Air Outlets and Inlets: Plus or minus 10 percent.

3.09 REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

3.10 FINAL REPORT

- A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 - 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 - 2. Include a list of instruments used for procedures, along with proof of calibration.
- B. Final Report Contents: In addition to certified field-report data, include the following:
 - 1. Field test reports prepared by system and equipment installers.
 - 2. Other information relative to equipment performance; do not include Shop Drawings and product data.
- C. General Report Data: In addition to form titles and entries, include the following data:
 - 1. Title page.
 - 2. Project name.
 - 3. Project location.
 - 4. Architect's name and address.
 - 5. Engineer's name and address.
 - 6. Contractor's name and address.
 - 7. Report date.
 - 8. Signature of TAB supervisor who certifies the report.
 - 9. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.

- 10. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
- 11. Nomenclature sheets for each item of equipment.
- 12. Data for terminal units, including manufacturer's name, type, size, and fittings.
- 13. Notes to explain why certain final data in the body of reports vary from indicated values.
- 14. Test conditions for fans and pump performance forms including the following:
 - a. Settings for outdoor-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Cooling coil, wet- and dry-bulb conditions.
 - d. Fan drive settings including settings and percentage of maximum pitch diameter.
 - e. Other system operating conditions that affect performance.

3.11 ADDITIONAL TESTS

- A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.
- B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

SECTION 23 0713 DUCT INSULATION

PART 1 GENERAL

1.01 SUMMARY

- A. Section includes insulating the following duct services:
 - 1. Indoor, concealed supply, return, exhaust and outdoor air.
 - 2. Indoor, Fire Barrier Duct Wrap+
 - 3. Exterior, exhaust and outdoor air (Flexclad
- B. Related Sections:
 - 1. Section 23 0719 "HVAC Piping Insulation."
 - 2. Section 23 3113 "Metal Ducts" for duct liners.

1.02 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.03 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.04 QUALITY ASSURANCE

- A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.
 - 3. Fire Barrier Duct Wrap: Flame-spread index of the bare blanket, and of the foil encapsulated blanket shall be 0/0.

1.05 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.06 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 23 0529 "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with duct Installer for duct insulation application. Establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

PART 2 PRODUCTS

2.01 INSULATION MATERIALS

- A. Comply with requirements in "Duct Insulation Schedule, General," "Indoor Duct and Plenum Insulation Schedule" article for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- D. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- E. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- F. Insulation: ASTM C1289 Type 1, Class 1; rigid polyisocyanurate foam with foil face on both sides.
 - 1. 'K' value : ASTM C518, 0.16 at 75 degrees F.
 - 2. Maximum service temperature: 250 degrees F.
 - 3. Maximum moisture absorption: 0.1 percent by volume.

2.02 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
- C. FSK Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.

2.03 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.
 - 1. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
 - 2. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 3. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
 - 4. Color: White.

- C. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
 - Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness. Service Temperature Range: Minus 20 to plus 180 deg F. 1.
 - 2.
 - Solids Content: 60 percent by volume and 66 percent by weight. 3.
 - Color: White. 4.

2.04 SEALANTS

- A. FSK and Metal Jacket Flashing Sealants:
 - 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 2. Fire- and water-resistant, flexible, elastomeric sealant.
 - 3. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 4. Color: Aluminum.

2.05 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.06 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. Metal Jacket:
 - 1. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 - a. Sheet and roll stock ready for shop or field sizing.
 - b. Finish and thickness are indicated in field-applied jacket schedules.
 - c. Moisture Barrier for Outdoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft paper.

2.07 **TAPES**

- A. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Width: 3 inches.
 - 2. Thickness: 6.5 mils.
 - 3. Adhesion: 90 ounces force/inch in width.
 - 4. Elongation: 2 percent.
 - 5. Tensile Strength: 40 lbf/inch in width.
 - 6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

2.08 SECUREMENTS

- A. Insulation Pins and Hangers:
 - 1. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:

- a. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
- b. Spindle: Copper- or zinc-coated, low-carbon steel, fully annealed, 0.106-inchdiameter shank, length to suit depth of insulation indicated.
- c. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
- 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick, galvanized-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 - a. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
- B. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.

2.09 DUCT INSULATION, POLYISO, RIGID BOARD

- A. Manufacturers: Mansville, Dyplast
- B. Substitutions: Refer to the substitution procedure specification and submit requests for approval.
- C. Insulation: ASTM C1289 Type 1, Class 1; rigid polyisocyanurate foam with foil face on both sides.
 - 1. 'K' value : ASTM C518, 0.16 at 75 degrees F.
 - 2. Maximum service temperature: 250 degrees F.
 - 3. Maximum moisture absorption: 0.1 percent by volume
- D. Weatherproof Jacket: FlexClad-400, 45 mil waterproofing membrane
 1. Adhesive: MFM Spray Adhesive.

2.10 FIRE BARRIER DUCT WRAP

- A. Manufacturer: 3M (Model 615+)
- B. Substitutions: Refer to the substitution procedure specification and submit requests for approval.
- C. 3M Fire Barrier Duct Wrap 615+ shall be a high-temperature fiber blanket thermal insulation encapsulated in a fiberglass reinforced aluminized polyester foil. Duct Wrap density shall be nominal 6 pcf (96 kg/m3) and have a nominal 1-1/2 in. (38.1 mm) thickness. The fiber blanket shall have a continuous use limit of 1832 °F (1000 °C). The blanket thermal resistance (R-value) at ambient temperature shall be minimum 6.3 °F *ft* °F·*ft*2·*hr Btu*. Smoke Developed Index and Flame Spread Index of the bare blanket, and of the foil encapsulated blanket shall be 0/0. The foil encapsulation shall be bonded to the core blanket material.

PART 3 EXECUTION

3.01 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.02 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.
- B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Keep insulation materials dry during application and finishing.
- G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- H. Install insulation with least number of joints practical.
- I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
- J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- K. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.
- L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

- M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- O. Fire Barrier Duct Wrap shall be in strict accordance with manufacturer's written instruction, as shown on approved shop drawings.
- P. Exterior ductwork shall be installed in strict accordance with manufacturer's installation instructions.

3.03 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- C. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.
 - 1. Seal penetrations through fire-rated assemblies with code-compliant firestopping and fireresistive joint sealers in accordance with applicable code requirements.
- D. Insulation Installation at Floor Penetrations:
 - 1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
 - 2. Seal penetrations through fire-rated assemblies with code-compliant firestopping requirements.

3.04 INSTALLATION OF MINERAL-FIBER INSULATION

- A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.

- 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Impale insulation over pins and attach speed washers.
 - f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.
- 5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.
- 6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.
- B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.

- c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
- d. Do not overcompress insulation during installation.
- e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.
- 5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.05 FIELD-APPLIED JACKET INSTALLATION

- A. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.
- B. For exterior duct follow manufacturer's installation instructions.

3.06 EXTERIOR DUCTWORK

- A. Install rigid polyiso insulation with foil backing.
- B. Secure installation with mechanical fasteners per NAIMA and manufacturer instructions.
- C. Cover insulation with weatherproof jacket in strict conformance with manufacturer's installation instructions.

3.07 FINISHES

A. Do not field paint aluminum jackets.

3.08 FIELD QUALITY CONTROL

A. Perform tests and inspections.

- B. Tests and Inspections:
 - 1. Inspect ductwork, randomly selected by Engineer, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to two location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.
- C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.09 DUCT INSULATION SCHEDULE, GENERAL

- A. Plenums and Ducts Requiring Insulation:
 - 1. Indoor, concealed supply, return, exhaust and outside air.
- B. Items Not Insulated:
 - 1. Fibrous-glass ducts.
 - 2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
 - 3. Factory-insulated flexible ducts.
 - 4. Factory-insulated plenums and casings.
 - 5. Flexible connectors.
 - 6. Vibration-control devices.
 - 7. Factory-insulated access panels and doors.

3.10 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Concealed, Supply, Return, Exhaust and Outside-Air Duct and Plenum Insulation: Mineral-fiber blanket or board, 2 inches thick and 0.75-lb/cu. Ft. nominal density.

3.11 EXTERIOR ROOFTOP INSULATION SCHEDULE

A. 2" thick rigid polyiso ductwork insulation, for supply, return and outside air ducts.

SECTION 23 0719 HVAC PIPING INSULATION

PART 1 GENERAL

1.01 SUMMARY

- A. Section includes insulating the following HVAC piping systems:
 - 1. Refrigerant suction and hot-gas piping.
 - 2. Condensate piping.
- B. Related Sections:
 - 1. Section 23 0713 "Duct Insulation."

1.02 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.03 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.04 QUALITY ASSURANCE

- A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

PART 2 PRODUCTS

2.01 INSULATION MATERIALS

- A. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- B. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials. Must be plenum-rated.

2.02 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.

C. PVC Jacket Adhesive: Compatible with PVC jacket.

2.03 SEALANTS

- 1. Materials shall be compatible with insulation materials, jackets, and substrates.
- 2. Permanently flexible, elastomeric sealant.
- 3. Service Temperature Range: Minus 100 to plus 300 deg F.
- 4. Color: White or gray.
- B. PVC Jacket Flashing Sealants:
 - 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 2. Fire- and water-resistant, flexible, elastomeric sealant.
 - 3. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 4. Color: White.

2.04 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. Adhesive: As recommended by jacket material manufacturer.
 - 2. Color: White.
 - 3. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 - a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

2.05 TAPES

- A. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 - 1. Width: 2 inches.
 - 2. Thickness: 6 mils.
 - 3. Adhesion: 64 ounces force/inch in width.
 - 4. Elongation: 500 percent.
 - 5. Tensile Strength: 18 lbf/inch in width.

PART 3 EXECUTION

3.01 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.02 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- C. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Section 07 8413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.
- D. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 07 8413 "Penetration Firestopping."

3.03 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

- A. Seal longitudinal seams and end joints with manufacturers recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturers recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 - 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
 - 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.04 FIELD-APPLIED JACKET INSTALLATION

- A. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications. Seal with manufacturers recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

3.05 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.06 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

3.07 INDOOR PIPING INSULATION SCHEDULE

- A. Condensate Piping: Insulation shall be the following:
 - 1. Flexible Elastomeric: 1/2 inch thick.
- B. Refrigerant Suction and Hot-Gas Tubing/Piping: Flexible elastomeric, 1-1/2 inch thick.

3.08 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

A. Refrigerant Suction and Hot-Gas Piping: Flexible Elastomeric: 2 inches thick.

3.09 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. Refrigerant Piping, Exposed:
 - 1. PVC: 30 mils thick.

SECTION 23 2300 REFRIGERANT PIPING

PART 1 GENERAL

1.01 SUMMARY

A. This Section includes refrigerant piping used for air-conditioning applications.

1.02 PERFORMANCE REQUIREMENTS

- A. Line Test Pressure for Refrigerant R-410A:
 - 1. Suction Lines: 535 psig.
 - 2. Hot-Gas and Liquid Lines: 535 psig.

1.03 ACTION SUBMITTALS

- A. Product Data: For each type of valve and refrigerant piping specialty indicated. Include pressure drop based on manufacturer's test data.
- B. Shop Drawings: Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes, flow capacities, valve arrangements and locations, slopes of horizontal runs, oil traps, double risers, wall and floor penetrations, and equipment connection details. Show interface and spatial relationships between piping and equipment.
 - 1. Refrigerant piping indicated on Drawings is schematic only. Size piping and design actual piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment.

1.04 INFORMATIONAL SUBMITTALS

A. Field quality-control test reports.

1.05 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.06 QUALITY ASSURANCE

- A. Comply with ASHRAE 15, "Safety Code for Refrigeration Systems."
- B. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

1.07 PRODUCT STORAGE AND HANDLING

A. Store piping in a clean and protected area with end caps in place to ensure that piping interior and exterior are clean when installed.

PART 2 PRODUCTS

2.01 COPPER TUBE AND FITTINGS

A. Provide as recommended by equipment by manufacturer.

2.02 VALVES AND SPECIALTIES

A. Provide as recommended by equipment by manufacturer.

2.03 REFRIGERANTS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. ASHRAE 34, R-410A: Pentafluoroethane/Difluoromethane.

PART 3 EXECUTION

3.01 PIPING APPLICATIONS

A. Provide as recommended by equipment by manufacturer.

3.02 VALVE AND SPECIALTY APPLICATIONS

A. Provide as recommended by equipment by manufacturer.

3.03 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.
- B. Install refrigerant piping according to ASHRAE 15.
- C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping adjacent to machines to allow service and maintenance.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.

- I. Select system components with pressure rating equal to or greater than system operating pressure.
- J. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.
- K. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.
- L. Slope refrigerant piping as follows:
 - 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 - 2. Install horizontal suction lines with a uniform slope downward to compressor.
 - 3. Install traps and double risers to entrain oil in vertical runs.
 - 4. Liquid lines may be installed level.
- M. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.
- N. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.
- O. Identify refrigerant piping and valves according to Section 23 0553 "Identification for HVAC Piping and Equipment."
- P. Install sleeves for piping penetrations of walls, ceilings, and floors.
- Q. Install sleeve seals for piping penetrations of concrete walls and slabs.
- R. Install escutcheons for piping penetrations of walls, ceilings, and floors.

3.04 PIPE JOINT CONSTRUCTION

- A. Soldered Joints: Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."
- B. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
 - 1. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper pipe. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.

3.05 HANGERS AND SUPPORTS

- A. Hanger, support, and anchor products are specified in Section 23 0529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet long.
 - 2. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.

3.06 FIELD QUALITY CONTROL

- A. Perform tests and inspections as recommended by equipment manufacturer and prepare test reports.
- B. Tests and Inspections:
 - 1. Comply with ASME B31.5, Chapter VI.
 - 2. Test refrigerant piping and specialties. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
 - 3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in Part 1 "Performance Requirements" Article.
 - a. Fill system with nitrogen to the required test pressure.
 - b. System shall maintain test pressure at the manifold gage throughout duration of test. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 - c. Remake leaking joints using new materials, and retest until satisfactory results are achieved.

3.07 SYSTEM CHARGING

A. Charge system as recommended by equipment manufacturer.

SECTION 23 3113 METAL DUCTS

PART 1 GENERAL

1.01 SUMMARY

A. Section Includes:

- 1. Rectangular ducts and fittings.
- 2. Round ducts and fittings.
- 3. Double-wall rectangular ducts and fittings.
- 4. Sheet metal materials.
- 5. Sealants and gaskets.
- 6. Hangers and supports.
- B. Related Sections:
 - 1. Section 23 0593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
 - 2. Section 23 3300 "Air Duct Accessories" for dampers, duct-mounting access doors, turning vanes, and flexible ducts.

1.02 PERFORMANCE REQUIREMENTS

A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.

1.03 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.04 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.
- B. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.

PART 2 PRODUCTS

2.01 RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

2.02 ROUND DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 - 1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Fabricate round ducts larger Than 90 inches in diameter with butt-welded longitudinal seams.
- D. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards -Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for staticpressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.03 DOUBLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. Rectangular Ducts: Fabricate ducts with indicated dimensions for clear internal dimensions of the inner duct.
- B. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

- 1. Construct ducts of paint-grip galvanized sheet steel.
- C. Transverse Joints: Select joint types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. For ducts with longest side less than 36 inches, select joint types in accordance with Figure 2-1.
 - For ducts with longest side 36 inches or greater, use flange joint connector Type T-22, T-24, T-25a, or T-25b. Factory-fabricated flanged duct connection system may be used if submitted and approved by engineer of record.
- D. Longitudinal Seams: Select seam types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
- E. Interstitial Insulation: Flexible elastomeric duct liner complying with ASTM C534/C534M, Type II for sheet materials, and with NFPA 90A or NFPA 90B.
 - 1. Maximum Thermal Conductivity: 0.25 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
- F. Inner Duct: Minimum 24-gauge perforated galvanized sheet steel having 3/32-inch-diameter perforations, with overall open area of 23 percent.

2.04 SHEET METAL MATERIALS

- A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90.
 - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
- C. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304 or 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule" Article.
- D. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; galvanized.

2.05 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- B. Two-Part Tape Sealing System:

- 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
- 2. Tape Width: 4 inches.
- 3. Sealant: Modified styrene acrylic.
- 4. Water resistant.
- 5. Mold and mildew resistant.
- 6. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
- 7. Service: Indoor and outdoor.
- 8. Service Temperature: Minus 40 to plus 200 deg F.
- 9. Substrate: Compatible with galvanized sheet steel .
- C. Flanged Joint Sealant: Comply with ASTM C 920.
 - 1. General: Single-component, acid-curing, silicone, elastomeric.
 - 2. Type: S.
 - 3. Grade: NS.
 - 4. Class: 25.
 - 5. Use: O.
- D. Round Duct Joint O-Ring Seals:
 - 1. Seal shall provide maximum 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for10-inch wg staticpressure class, positive or negative.
 - 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 - 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.06 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."
- C. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
- D. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- E. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- F. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.

PART 3 EXECUTION

3.01 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations.

Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.

- B. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- C. Install round ducts in maximum practical lengths.
- D. Install ducts with fewest possible joints.
- E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.
- I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.
- J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.
- K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Section 23 3300 "Air Duct Accessories" for fire and smoke dampers.
- L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "IAQ Guidelines for Occupied Buildings Under Construction," Appendix G, "Duct Cleanliness for New Construction Guidelines."

3.02 DUCT SEALING

- A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- B. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible":
 - 1. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 2. Unconditioned Space, Supply-Air Ducts: Seal Class B.
 - 3. Unconditioned Space, Exhaust Ducts: Seal Class C.
 - 4. Unconditioned Space, Return-Air Ducts: Seal Class B.
 - 5. Conditioned Space, Supply-Air Ducts: Seal Class C.
 - 6. Conditioned Space, Exhaust Ducts: Seal Class B.
 - 7. Conditioned Space, Return-Air Ducts: Seal Class C.

3.03 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
 - 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.
- D. Hangers Exposed to View: Threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.
- F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.04 CONNECTIONS

- A. Make connections to equipment with flexible connectors complying with Section 23 3300 "Air Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.05 DUCT CLEANING

A. Clean new duct system(s) before testing, adjusting, and balancing.

3.06 START UP

A. Air Balance: Comply with requirements in Section 23 0593 "Testing, Adjusting, and Balancing for HVAC."

3.07 DUCT SCHEDULE

- A. Fabricate ducts with galvanized sheet steel.
- B. Supply Ducts:
 - 1. Ducts Connected to Constant-Volume Air-Handling Units:

- a. Pressure Class: Positive 2-inch wg.
- b. Minimum SMACNA Seal Class: B.
- c. SMACNA Leakage Class for Rectangular: 12.
- d. SMACNA Leakage Class for Round and Flat Oval: 12.
- C. Return Ducts:
 - 1. Ducts Connected to Air-Handling Units:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: B.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
- D. Exhaust Ducts:
 - 1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 - a. Pressure Class: Negative 1-inch wg.
 - b. Minimum SMACNA Seal Class: C if negative pressure, and A if positive pressure.
 - c. SMACNA Leakage Class for Rectangular: 24.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
 - 2. Ducts Connected to Kitchen Hoods: Comply with NFPA 96.
 - a. Exposed to View: Type 304, stainless-steel sheet, No. 4 finish.
 - b. Concealed: Type 304, stainless-steel sheet, No. 2D finish.
 - c. Welded seams and joints.
 - d. Pressure Class: Positive or negative 3-inch wg.
 - e. Minimum SMACNA Seal Class: Welded seams, joints, and penetrations.
 - f. SMACNA Leakage Class: 3.
- E. Double-Wall Duct Interstitial Insulation:
 - 1. Supply-Air Ducts: 1 inch thick.
- F. Intermediate Reinforcement:
 - 1. Galvanized-Steel Ducts: Galvanized steel.
 - 2. Stainless-Steel Ducts:
 - a. Exposed to Airstream: Match duct material.
 - b. Not Exposed to Airstream: Match duct material.
- G. Elbow Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards -Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

- 2. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 - a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 - 1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 - 2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
 - Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 - 4) Radius-to Diameter Ratio: 1.5.
 - b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 - c. Round Elbows, 14 Inches and Larger in Diameter: Standing seam.

H. Branch Configuration:

- 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-6, "Branch Connection."
 - a. Rectangular Main to Rectangular Branch: 45-degree entry.
 - b. Rectangular Main to Round Branch: Spin in.
- Round: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
 - a. Velocity 1000 fpm or Lower: 90-degree tap.
 - b. Velocity 1000 to 1500 fpm: Conical tap.
 - c. Velocity 1500 fpm or Higher: 45-degree lateral.

SECTION 23 3300 AIR DUCT ACCESSORIES

PART 1 GENERAL

1.01 SUMMARY

- A. Section Includes:
 - 1. Manual volume dampers.
 - 2. Fire dampers.
 - 3. Flange connectors.
 - 4. Turning vanes.
 - 5. Duct-mounted access doors.
 - 6. Flexible connectors.
 - 7. Flexible ducts.
 - 8. Duct accessory hardware.
- B. Related Requirements:
 - 1. Fire Alarm specifications per electrical drawings.

1.02 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.03 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

PART 2 PRODUCTS

2.01 ASSEMBLY DESCRIPTION

- A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and with NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.02 MATERIALS

- A. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90.
 - 2. Exposed-Surface Finish: Mill phosphatized.
- B. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.

2.03 MANUAL VOLUME DAMPERS

- A. Standard, Steel, Manual Volume Dampers:
 - 1. Standard leakage rating, with linkage outside airstream.
 - 2. Suitable for horizontal or vertical applications.
 - 3. Frames:
 - a. Frame: Hat-shaped, 0.094-inch-thick, galvanized sheet steel.
 - b. Mitered and welded corners.
 - c. Flanges for attaching to walls and flangeless frames for installing in ducts.
 - 4. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Galvanized-steel, 0.064 inch thick.
 - 5. Blade Axles: Galvanized steel.
 - 6. Bearings:
 - a. Molded synthetic.
 - b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 - 7. Tie Bars and Brackets: Galvanized steel.
- B. Damper Hardware:
 - 1. Zinc-plated, die-cast core with dial and handle made of 3/32-inch- thick zinc-plated steel, and a 3/4inch hexagon locking nut.
 - 2. Include center hole to suit damper operating-rod size.
 - 3. Include elevated platform for insulated duct mounting.

2.04 FIRE DAMPERS

- A. Type: Dynamic; rated and labeled according to UL 555 by an NRTL.
- B. Closing rating in ducts up to 4-inch wg static pressure class and minimum 2000-fpm velocity.
- C. Fire Rating: 1-1/2 hours.
- D. Frame: Curtain type with blades outside airstream; fabricated with roll-formed, 0.034-inch- thick galvanized steel; with mitered and interlocking corners.
- E. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
 - 1. Minimum Thickness: 0.138 inch thick and of length to suit application.
 - 2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.
- F. Mounting Orientation: Vertical or horizontal as indicated.

- G. Blades: Roll-formed, interlocking, 0.024-inch-thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch-thick, galvanized-steel blade connectors.
- H. Horizontal Dampers: Include blade lock and stainless-steel closure spring.
- I. Heat-Responsive Device: Replaceable, 165 deg F rated, fusible links.

2.05 FLANGE CONNECTORS

- A. Description: Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.
- B. Material: Galvanized steel.
- C. Gage and Shape: Match connecting ductwork.

2.06 TURNING VANES

- A. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
 - 1. Acoustic Turning Vanes: Fabricate airfoil-shaped aluminum extrusions with perforated faces and fibrous-glass fill.
- B. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resin-bonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
- C. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."
- D. Vane Construction: Single wall.

2.07 DUCT-MOUNTED ACCESS DOORS

- A. Duct-Mounted Access Doors: Fabricate access panels according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 7-2, "Duct Access Doors and Panels," and 7-3, "Access Doors -Round Duct."
 - 1. Door:
 - a. Double wall, rectangular.
 - b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 - c. Vision panel.
 - d. Hinges and Latches: 1-by-1-inch butt or piano hinge and cam latches.
 - e. Fabricate doors airtight and suitable for duct pressure class.
 - 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
 - 3. Number of Hinges and Locks:
 - a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 - b. Access Doors up to 18 Inches Square: Continuous and two sash locks.

2.08 FLEXIBLE CONNECTORS

- A. Materials: Flame-retardant or noncombustible fabrics.
- B. Coatings and Adhesives: Comply with UL 181, Class 1.
- C. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to two strips of 2-3/4-inch- wide, 0.028-inch- thick, galvanized sheet steel or 0.032-inch- thick aluminum sheets. Provide metal compatible with connected ducts.
- D. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene.
 - 1. Minimum Weight: 26 oz./sq. yd.
 - 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 - 3. Service Temperature: Minus 40 to plus 200 deg F.

2.09 FLEXIBLE DUCTS

- A. Insulated, Flexible Duct: UL 181, Class 1, aluminum laminate and polyester film with latex adhesive supported by helically wound, spring-steel wire; fibrous-glass insulation; polyethylene or aluminized vapor-barrier film.
 - 1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
 - 2. Maximum Air Velocity: 4000 fpm.
 - 3. Temperature Range: Minus 20 to plus 210 deg F.
 - 4. Insulation R-value: Comply with ASHRAE/IESNA 90.1.

2.10 DUCT ACCESSORY HARDWARE

- A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.
- B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 EXECUTION

3.01 INSTALLATION

- A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards -Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.
- B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.
- C. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 - 1. Install steel volume dampers in steel ducts.

- D. Set dampers to fully open position before testing, adjusting, and balancing.
- E. Install test holes at fan inlets and outlets and elsewhere as indicated.
- F. Install fire and smoke dampers according to UL listing.
- G. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 - 1. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
 - 2. Control devices requiring inspection.
 - 3. Elsewhere as indicated.
- H. Install access doors with swing against duct static pressure.
- I. Access Door Sizes:
 - 1. One-Hand or Inspection Access: 8 by 5 inches.
 - 2. Two-Hand Access: 12 by 6 inches.
 - 3. Head and Hand Access: 18 by 10 inches.
- J. Label access doors according to Section 23 0553 "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.
- K. Install flexible connectors to connect ducts to equipment.
- L. Connect terminal units to supply ducts directly or with maximum 12-inch lengths of flexible duct. Do not use flexible ducts to change directions.
- M. Connect diffusers to ducts directly or with maximum 60-inch lengths of flexible duct clamped or strapped in place.
- N. Install duct test holes where required for testing and balancing purposes.

3.02 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Operate dampers to verify full range of movement.
 - 2. Inspect locations of access doors and verify that purpose of access door can be performed.
 - 3. Operate fire and smoke dampers to verify full range of movement and verify that proper heatresponse device is installed.
 - 4. Inspect turning vanes for proper and secure installation.

SECTION 23 3713 DIFFUSERS, REGISTERS, AND GRILLES

PART 1 GENERAL

1.01 SUMMARY

- A. Section Includes:
 - 1. Diffusers, registers, and grilles.
- B. Related Sections:
 - 1. Section 23 3300 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers, registers, and grilles.

1.02 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated, include the following:
 - 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 - 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

PART 2 PRODUCTS

2.01 DIFFUSERS, REGISTERS, AND GRILLES

A. Refer to schedule on design drawings for further information.

2.02 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 EXECUTION

3.01 INSTALLATION

- A. Install diffusers, registers, and grilles level and plumb.
- B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.
- C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.02 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

SECTION 23 7433 DEDICATED OUTDOOR-AIR UNITS

PART 1 GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions, apply to this Section.

1.02 SUMMARY

A. Section includes factory-packaged units capable of supplying up to 100 percent outdoor air and providing cooling and heating.

1.03 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include rated capacities, operating characteristics, and furnished specialties and accessories.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, and attachment details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
- C. Delegated-Design Submittal: For DOAS supports indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Design Calculations: Calculate requirements for selecting vibration isolators and for designing vibration isolation bases.
 - 2. Detail mounting, securing, and flashing of roof curb to roof structure. Indicate coordinating requirements with roof membrane system.

1.04 INFORMATIONAL SUBMITTALS

- A. Startup service reports.
- B. Sample Warranty: For special warranty.

1.05 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For units to include in emergency, operation, and maintenance manuals.

1.06 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

- 1. Fan Belts: One set for each belt-driven fan.
- 2. Filters: One set for each unit.

1.07 WARRANTY

- A. Special Warranty: Manufacturer agrees to replace components of units that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period for Compressors: Five years from date of Substantial Completion.
 - 2. Warranty Period for Heat Exchangers: Five years from date of Substantial Completion.

PART 2 PRODUCTS

2.01 MANUFACTURERS

A. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide product indicated on Drawings or comparable product. Substitution must be approved by Engineer prior to bidding/pricing.

2.02 GENERAL UNIT DESCRIPTION

- A. Unit(s) furnished and installed shall be packaged outdoor air unit(s) as scheduled on contract documents and these specifications. Unit(s) shall consist of insulated weather-tight casing with compressor(s), air-cooled condenser coil, condenser fans, evaporator coil, air filters, supply motors and unit controls.
- B. Refer to schedule on design drawings for further information.
- C. Before shipment, each unit(s) shall be leak tested, dehydrated, charged with refrigerant (R-454B) and compressor oil, and factory run tested for proper control operation.
- D. Unit(s) shall have labels, decals, and/or tags to aid in the service of the unit and indicate caution areas.
- E. Unit(s) shall be dedicated downflow or dedicated, thru curb horizontal airflow as manufactured.
- F. Wiring internal to the unit shall be colored and numbered for identification.

2.03 LOCAL CONTROL SYSTEM

- A. Local Microprocessor Controller : The DOAS unit shall be equipped with a stand-alone microprocessor-based controller with resident control logic. This controller will manage all unit functions locally, including coordination with the VRF system through a single occupancy signal. No interface to a Building Management System (BMS) is required.
- B. Control Functions: Local controller will manage the following:
 - 1. Occupied/unoccupied mode via occupancy signal from the VRF control system.
 - 2. Automatic switching between conditioning modes (heating, cooling) based on discharge air temperature set points.
 - 3. Discharge air set point adjustment for maintaining proper air delivery.
 - 4. Local alarm shutdown in case of equipment failure.

- C. Diagnostic Functions: Local controller shall provide status display via the unit-mounted (not fieldmounted) interface panel to key diagnostic information, including:
 - 1. Supply fan operation status.
 - 2. Filter status monitoring.
 - 3. Outdoor air damper position and status.

2.04 ROOF CURB

A. Roof curbs shall be provided by the unit's supplier. Curbs shall be vibration isolation type custom made from 12 gauge or heavier as required galvanized steel with welded one-piece construction and insulated with 1-1/2" thick rigid insulation. Curb height shall be minimum of 14" high above the finished roof height. Secure curb to roof structure and unit to curb per manufacturer's recommendations for site's wind zone loading. Curbs shall have structural cross members.

PART 3 EXECUTION

3.01 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for piping, ducts, and electrical systems to verify actual locations of connections before equipment installation.
- C. Examine roof curbs and equipment supports for suitable conditions where units will be installed.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 INSTALLATION

- A. Comply with manufacturer's rigging and installation instructions for unloading units and moving to final locations.
- B. Curb Support: Install roof curb on roof structure according to "The NRCA Roofing Manual."
 - 1. Secure units on curbs and coordinate roof penetrations and flashing with roof construction. Coordinate with the roofing contractor to ensure compatibility with the roof membrane system.
 - 2. Verify the size, installation, and structural capacity of roof curbs and equipment supports with the roof installer to meet the manufacturer and site requirements.
 - 3. Coordinate size, location, and installation of unit manufacturer's roof curbs and equipment supports with roof Installer.
 - 4. Ensure the curb height (minimum 14" above finished roof) meets local wind load and weatherproofing requirements.
 - 5. Provide vibration isolation supports to prevent the transmission of equipment vibrations into the building structure.
 - 6. Review site-specific roof slope conditions with the roofing contractor to ensure proper drainage around the curb and prevent ponding water near penetrations.
 - 7. Secure curbs and units according to both manufacturer recommendations and building wind zone requirements to ensure stability during adverse weather.
 - 8. Communicate early with all trades involved (roofers, structural, and mechanical contractors) to align installation schedules and avoid delays or rework.

- C. Install wall- and duct-mounted sensors furnished by manufacturer for field installation. Install control wiring and make final connections to control devices and unit control panel.
- D. Install separate devices furnished by manufacturer and not factory installed.
- E. Install new filters at completion of equipment installation and before testing, adjusting, and balancing.
- F. Install drain pipes from unit drain pans to roof drains. Provide manufactured roof pipe supports for condensate piping. Piping supports shall be designed specifically for support of condensate piping systems. Supports shall be UV resistant and suitable for installation on roofing material. Supports must comply with NCPC 301.10 for wind speeds up to 145 MPH.
 - 1. Drain Piping: Schedule 40 PVC pipe complying with ASTM D 1785, with solvent-welded fittings.
 - 2. Pipe Size: Same size as condensate drain pan connection.

3.03 CONNECTIONS

- A. Where installing piping adjacent to units, allow space for service and maintenance.
- B. Duct Connections:
 - 1. Comply with requirements in Section 23 3113 "Metal Ducts."
 - 2. Drawings indicate the general arrangement of ducts.
 - 3. Connect ducts to units with flexible duct connectors. Comply with requirements for flexible duct connectors in Section 23 3300 "Air Duct Accessories."
- C. Electrical Connections: Comply with requirements for power wiring, switches, and motor controls in electrical Sections.
 - 1. Install electrical devices furnished by unit manufacturer but not factory mounted.

3.04 FACTORY VERIFICATION TESTING

- A. Unit shall be run tested prior to shipment from the factory.
- B. Factory run test report shall be provided at the request of the engineer, contractor, or owner.
- C. Testing Procedures
 - 1. Unit shall be subjected to and pass a dielectric (hipot) test.
 - 2. All motorized dampers shall be cycled one full stroke while installed in the unit using the factory-provided motorized actuators.
 - 3. Supply fan
 - a. Verify the operation of the fan and its rotation direction during startup, including ramp-up and ramp-down.
 - b. Verify any pressure switches wired to the local controller function correctly.
 - c. Measure and record current draw through supply fan motor(s).
 - 4. Condensing fans
 - a. Ensure fans rotate freely without obstruction.
 - b. Energize fans and ensure proper rotation.
 - c. Measure and record the amount of current draw through each condensing fan.
 - 5. Refrigeration system
 - a. Measure and record subcooling and superheat on circuit A with hot-gas reheat valve closed (0%) after 15 minutes of steady-state operation.
 - b. Measure and record subcooling and superheat on circuit A with hot-gas reheat valve open (100%) after 15 minutes of steady-state operation.

- c. Measure and record subcooling and superheat on circuit B after 15 minutes of steadystate operation.
- 6. Interlocks and Alarms
 - a. Verify the local alarm shutdown sequence when failure conditions (e.g., fan failure, filter clog) are triggered.
 - b. Inspect interlock performance between DOAS and VRF system occupancy signal to unsure proper mode switching.
- 7. Diagnostics
 - a. Confirm that the local unit-mounted interface provides real-time status for fan operation, damper position, and filter status
 - b. Test any built-in alarms or error codes to ensure they display correctly on the local interface panel.
- D. Test report shall be included with unit and available from the factory upon request.

3.05 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Inspect units for visible damage to furnace combustion chamber.
 - 3. Verify operation of unit-mounted panel including pilot-light operation and failure modes. Inspect the following:
 - a. High-limit heat exchanger.
 - b. Alarms.
 - 4. Inspect units for visible damage to refrigerant compressor, condenser and evaporator coils, and fans.
 - 5. Start refrigeration system when outdoor-air temperature is within normal operating limits and measure and record the following:
 - a. Cooling coil leaving-air, dry- and wet-bulb temperatures.
 - b. Cooling coil entering-air, dry- and wet-bulb temperatures.
 - c. Condenser coil entering-air dry-bulb temperature.
 - d. Condenser coil leaving-air dry-bulb temperature.
 - 6. Simulate maximum cooling demand and inspect the following:
 - a. Compressor refrigerant suction and hot-gas pressures.
 - b. Short-circuiting of air through outside coil or from outside coil to outdoor-air intake.
 - 7. Inspect casing insulation for integrity, moisture content, and adhesion.
 - 8. Verify that clearances have been provided for servicing.
 - 9. Verify that controls are connected and operable.
 - 10. Verify that filters are installed.
 - 11. Clean coils and inspect for construction debris.
 - 12. Clean furnace flue and inspect for construction debris.
 - 13. Inspect operation of power vents.
 - 14. Verify bearing lubrication.
 - 15. Clean fans and inspect fan-wheel rotation for movement in correct direction without vibration and binding.
 - 16. Adjust fan belts to proper alignment and tension.
 - 17. Start unit.
 - 18. Inspect and record performance of interlocks and protective devices including response to smoke detectors by fan controls and fire alarm.
 - 19. Operate unit for run-in period.
 - 20. Calibrate controls.
 - 21. Adjust and inspect high-temperature limits.
 - 22. Verify operational sequence of controls.
 - 23. Measure and record the following airflows. Plot fan volumes on fan curve.
 - a. Supply-air volume.

- B. After startup, change filters, verify bearing lubrication, and adjust belt tension.
- C. Remove and replace components that do not properly operate and repeat startup procedures as specified above.
- D. Prepare written report of the results of startup services.

3.06 ADJUSTING

- A. Adjust initial temperature and humidity set points.
- B. Set field-adjustable switches and circuit-breaker trip ranges as indicated.
- C. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.07 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain units.

PART 4 SEQUENCE OF OPERATION

4.01 DEDICATED OUTDOOR AIR UNITS (DOAS)

- A. Microprocessor controller Each DOAS shall be equipped with a stand-alone, microprocessor-based controller with resident control logic. The controller will manage the DOAS unit independently, with a single occupancy connection to the VRF system controller to coordinate operation. All control will be managed locally by the DOAS controller, as no building management system (BMS) is provided.
 - 1. Occupied Discharge Air Control Mode During occupied mode, the DOAS unit will enable normal heating and cooling operation to maintain supply air at the discharge air setpoints. The controller will default to pre-programmed temperature setpoints if the occupancy signal is lost or not present.
- B. Low Ambient Compressor Lockout Compressor operation shall be disabled when the outdoor air temperature drops below a user-defined setpoint to prevent equipment damage.
- C. Local Unit status report The DOAS controller shall provide a local display of all key parameters, including current operating status, sensed values (such as discharge temperature), and active setpoints.
- D. Supply Air Tempering When the unit is in heating mode but not actively calling for heat, the outdoor air heat setpoint will maintain a minimum discharge air temperature to prevent rapid cycling of the heating element.

SECTION 23 8129 VARIABLE-REFRIGERANT-FLOW HVAC SYSTEMS

PART 1 GENERAL

1.01 SYSTEM DESCRIPTION

- A. The variable capacity, heat pump heat recovery air conditioning system shall be a Mitsubishi Electric CITY MULTI VRF (Variable Refrigerant Flow) zoning system.
- B. The R2-Series system shall consist of a PURY outdoor unit, BC (Branch Circuit) Controller, multiple indoor units, and M-NET DDC (Direct Digital Controls). Each indoor unit or group of indoor units shall be capable of operating in any mode independently of other indoor units or groups. System shall be capable of changing mode (cooling to heating, heating to cooling) with no interruption to system operation. To ensure owner comfort, each indoor unit or group of indoor units shall be independently controlled and capable of changing mode automatically when zone temperature strays 1.8 degrees F from set point for ten minutes. The sum of connected capacity of all indoor air handlers shall range from 50% to 150% of outdoor rated capacity.

1.02 QUALITY ASSURANCE

- A. The units shall be listed by Electrical Laboratories (ETL) and bear the ETL label.
- B. All wiring shall be in accordance with the National Electrical Code (N.E.C.).
- C. The units shall be manufactured in a facility registered to ISO 9001 and ISO14001 which is a set of standards applying to environmental protection set by the International Standard Organization (ISO).
- D. All units must meet or exceed the 2010 Federal minimum efficiency requirements and the ASHRAE 90.1 efficiency requirements for VRF systems. Efficiency shall be published in accordance with the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Standard 1230.
- E. System start-up supervision shall be a required service to be completed by the manufacturer or a duly authorized, competent representative that has been factory trained in system configuration and operation. The representative shall provide proof of manufacturer certification indicating successful completion within no more than two (2) years prior to system installation. This certification shall be included as part of the equipment and/or controls submittals.
- F. A full charge of R-410A for the condensing unit only shall be provided in the condensing unit.

1.03 DELIVERY, STORAGE, AND HANDLING

A. Unit shall be stored and handled according to the manufacturer's recommendation.

1.04 CONTROLS

A. The control system shall consist of a low voltage communication network of unitary built-in controllers with on-board communications and a web-based operator interface. A web

controller with a network interface card shall gather data from this system and generate web pages accessible through a conventional web browser on each PC connected to the network. Operators shall be able to perform all normal operator functions through the web browser interface.

- B. System controls and control components shall be installed in accordance with the manufacturer's written installation instructions.
- C. Furnish energy conservation features such as optimal start, night setback, request-based logic, and demand level adjustment of overall system capacity as specified in the sequence.
- D. System shall provide direct and reverse-acting on and off algorithms based on an input condition or group conditions to cycle a binary output or multiple binary outputs.
- E. Provide capability for future system expansion to include monitoring and use of occupant card access, lighting control and general equipment control.
- F. System shall be capable of email generation for remote alarm annunciation.
- G. Control system start-up shall be a required service to be completed by the manufacturer or a duly authorized, competent representative that has been factory trained in Mitsubishi Electric controls system configuration and operation. The representative shall provide proof of certification for Mitsubishi Electric Controls Applications Training indicating successful completion of no more than two (2) years prior to system installation. This certification shall be included as part of the equipment and/or controls submittals. This service shall be equipment and system count dependent and shall be a minimum of one (1) eight (8) hour period to be completed during normal working hours.
- H. Provide Digital Input Digital Output (DIDO) boards for non-Mitsubishi equipment integration, enabling On/Off control, independent scheduling, interlocking, and parameter adjustments based on digital input status.

1.05 WARRANTY

- A. The CITY MULTI units shall be covered by the manufacturer's limited warranty for a period of one (1) year parts and seven (7) year compressor to the original owner from date of installation.
- B. Installing contractor shall meet manufacturer requirements to obtain extended manufacturer's limited parts and compressor warranty for a period of ten (10) years to the original owner from date of installation. This warranty shall not include labor.
- C. Manufacturer shall have a minimum of fifteen (15) years continuous experience providing VRF systems in the U.S. market.
- D. All manufacturer technical and service manuals must be readily available for download by any local contractor should emergency service be required. Registering and sign-in requirements which may delay emergency service reference are not allowed.
- E. The CITY MULTI VRF system shall be installed by a contractor with extensive CITY MULTI install and service training. The mandatory contractor service and install training should be performed by the manufacturer.
- F. Verify available warranties and warranty periods for units and components with manufacturers listed in Part 2.

PART 2 PRODUCTS

2.01 R2-SERIES OUTDOOR UNIT

- A. General: The outdoor unit modules shall be air-cooled, direct expansion (DX), multi-zone units used specifically with VRF components described in this section and Part 5 (Controls). The outdoor unit modules shall be equipped with a single compressor which is inverter-driven and multiple circuit boards—all of which must be manufactured by the branded VRF manufacturer. Each outdoor unit module shall be completely factory assembled, piped and wired and run tested at the factory.
 - 1. Outdoor unit systems may be comprised of multiple modules with differing capacity if a brand other than basis of design is proposed. All units requiring a factory supplied twinning kits shall be piped together in the field, without the need for equalizing line(s). If an alternate manufacturer is selected, any additional material, cost, and labor to install additional lines shall be incurred by the contractor. Contractor responsible for ensuring alternative brand compatibility in terms of availability, physical dimensions, weight, electrical requirements, etc.
 - 2. Outdoor unit shall have a sound rating no higher than 68 dB(A) individually or 70 dB(A) twinned. Units shall have a sound rating no higher than 52 dB(A) individually or 55 dB(A) twinned while in night mode operation. Units shall have 5 levels sound adjustment via dip switch selectable fan speed settings. If an alternate manufacturer is selected, any additional material, cost, and labor to meet published sound levels shall be incurred by the contractor.
 - 3. Refrigerant lines from the outdoor unit to the indoor units shall be insulated in accordance with the installation manual.
 - 4. The outdoor unit shall have the capability of installing the main refrigerant piping through the bottom of the unit.
 - 5. The outdoor unit shall have an accumulator with refrigerant level sensors and controls. Units shall actively control liquid level in the accumulator via Linear Expansion Valves (LEV) from the heat exchanger.
 - 6. The outdoor unit shall have a high pressure safety switch, over-current protection, crankcase heater and DC bus protection.
 - 7. VRF system shall meet performance requirements per schedule and be within piping limitations & acceptable ambient temperature ranges as described in respective manufacturers' published product catalogs. Non-published product capabilities or performance data are not acceptable.
 - 8. The outdoor unit shall be capable of operating in heating mode down to -25F ambient temperatures or cooling mode down to 23F ambient temperatures, without additional low ambient controls. If an alternate manufacturer is selected, any additional material, cost, and labor to meet low ambient operating condition and performance shall be incurred by the contractor.
 - 9. The outdoor unit shall have a high efficiency oil separator plus additional logic controls to ensure adequate oil volume in the compressor is maintained. Oil return sequences must be enabled only during extended periods of reduced refrigerant flow to ensure no disruption to correct refrigerant flow to individual zones during peak loads. Systems which might engage oil return sequence based on hours of operation risk oil return during inopportune periods are not allowed. Systems which rely on sensors (which may fail) to engage oil return sequence are not allowed.
 - 10. Unit must defrost all circuits simultaneously in order to resume full heating more quickly during extreme low ambient temperatures (below 23F). Partial defrost, also known as hot gas defrost which allows reduced heating output during defrost, is permissible only when ambient temperature is above 23F.
 - 11. While in hot gas defrost the system shall slow the indoor unit fan speed down to maintain a high discharge air temperature, systems that keep fan running in same state shall not be allowed as they provide an uncomfortable draft to the indoor zone due to lower discharge air temperatures.

- 12. In reverse defrost all refrigerant shall be bypassed in the main branch controller and shall not be sent out to the indoor units, systems that flow refrigerant through indoor units during reverse defrost shall not be allowed.
- B. Unit Cabinet:
 - 1. The casing(s) shall be fabricated of galvanized steel, bonderized and finished.
 - Outdoor unit components shall be coated with the Seacoast Protection Coating (Brine Spray

 BS coating) to protect components from premature corrosion due to a seacoast environment. Coating shall be applied to components before original outdoor unit assembly to ensure manufacturer quality standards are not compromised and shall meet the following minimum requirements:
 - 3. ≥85µm thermoset polyester-resin powder coating on External Front Panel
 - 4. ≥70µm thermoset polyester-resin powder coating on External Panel Base, Pillar, Compressor Cover, Fan Motor Support, Electrical Box
 - 5. ≥1µm cellulose and polyurethane-resin coating on heat exchanger fins
 - 6. ≥10µm polyurethane coating on printed circuit boards
 - 7. The outdoor unit shall be tested in compliance with ISO9277 such that no unusual rust shall develop after 960 hours of salt spray testing.
 - 8. Panels on the outdoor unit shall be scratch free at system startup. If a scratch occurs the salt spray protection is compromised and the panel should be replaced immediately.

C.

- D. Fan:
 - 1. Each outdoor unit module shall be furnished with one direct drive, variable speed propeller type fan. The fan shall be factory set for operation under 0 in. WG external static pressure, but capable of normal operation under a maximum of 0.32 in. WG external static pressure via dipswitch.
 - 2. All fan motors shall have inherent protection, have permanently lubricated bearings, and be completely variable speed.
 - 3. All fan motors shall be mounted for quiet operation.
 - 4. All fans shall be provided with a raised guard to prevent contact with moving parts.
 - 5. The outdoor unit shall have vertical discharge airflow.
- E. Refrigerant:
 - 1. R410A refrigerant shall be required for PURY-P-T/Y(S) JMU-A outdoor unit systems
 - 2. Polyolester (POE) oil—widely available and used in conventional domestic systems—shall be required. Prior to bidding, manufacturers using alternate oil types shall submit material safety data sheets (MSDS) and comparison of hygroscopic properties for alternate oil with list of local suppliers stocking alternate oil for approval at least two weeks prior to bidding.
 - 3. Refrigerant piping shall be phosphorus deoxidized copper (copper and copper alloy seamless pipes) of sufficient radial thickness as defined by the VRF equipment manufacturer and installed in accordance with manufacturer recommendations.
 - 4. All refrigerant piping must be insulated with ½" closed cell, CFC-free foam insulation with flame-Spread Index of less than 25 and a smoke-development Index of less than 50 as tested by ASTM E 84 and CAN / ULC S-102. R value of insulation must be at least 3.
 - 5. Refrigerant line sizing shall be in accordance with manufacturer specifications. Future changes to indoor unit styles or sizes must be possible without resizing/replacing refrigerant piping to any other branch devices or indoor units.
- F. Coil:
 - 1. Outdoor Coil shall be constructed to provide equal airflow to all coil face surface are by means of a 4-sided coil
 - 2. Outdoor Coil shall be elevated at least 12" from the base on the unit to protect coil from freezing and snow build up in cold climates. Manufacturer's in which their coil extends to within a few inches from the bottom of their cabinet frame shall provide an additional 12"

of height to their stand or support structure to provide equal protection from elements as Mitsubishi Electric basis of design. Any additional support costs, equipment fencing, and tie downs required to meet this additional height shall be responsibility of Mechanical Contractor to provide.

- 3. The outdoor heat exchanger shall be of zinc coated aluminum construction with turbulating flat tube construction. The coil fins shall have a factory applied corrosion resistant finish. Uncoated aluminum coils/fins are not allowed.
- 4. The coil shall be protected with an integral metal guard.
- 5. Refrigerant flow from the outdoor unit shall be controlled by means of an inverter driven compressor.
- 6. Unit shall have prewired plugs for optional panel heaters in order to prevent any residual ice buildup from defrost. Panel heaters are recommended for operating environments where the ambient temperature is expected to stay below -1F for 72 hours.
- 7. Condenser coil shall have active hot gas circuit direct from compressor discharge on lowest coil face area to shed defrost condensate away from coil and protect from Ice formation after returning to standard heat pump operation. While in Heat Pump operation this lower section of the Outdoor Evaporator coil shall continually run hot gas from the compressor discharge to protect the coil from ice buildup and coil rupture. Manufacturers who do not have an active hot gas circuit in the lower section of the Outdoor coil to protect coil from freezing shall not be allowed to bid on project in markets where the outdoor unit will see temperatures below freezing.

G. Compressor:

- 1. Each outdoor unit module shall be equipped with only inverter driven scroll hermetic compressors. Non inverter-driven compressors, which may cause inrush current (demand charges) and require larger generators for temporary power shall not be allowed.
- 2. Each compressor shall be equipped with a multi-port discharge mechanism to eliminate over compression at part load. Manufacturer's that rely on a single compressor discharge port and provide no means of eliminating over compression and energy waste at part load shall not be allowed.
- 3. Crankcase heat shall be provided via induction-type heater utilizing eddy currents from motor windings. Energy-wasting "belly-band" type crankcase heaters are not allowed. Manufacturers that utilize belly-band crankcase heaters will be considered as alternate only.
- 4. Compressor shall have an inverter to modulate capacity. The capacity for each compressor shall be variable with a minimum turndown not greater than 15%.
- 5. The compressor shall be equipped with an internal thermal overload.
- 6. Field-installed oil equalization lines between modules are not allowed. Prior to bidding, manufacturers requiring equalization must submit oil line sizing calculations specific to each system and module placement for this project.
- 7. Manufacturers that utilize a compressor sump oil sensor to equalize compressor oil volume within a single module shall not be allowed unless they actively shut down the system to protect from compressor failure.

H. Controls:

- 1. The unit shall be an integral part of the system & control network described in the controls section of this specification and react to heating/cooling demand as communicated from connected indoor units over the control circuit. Required field-installed control voltage transformers and/or signal boosters shall be provided by the manufacturer.
- 2. Each outdoor unit module shall have the capability of 4 levels of demand control based on external input.
- I. Electrical:
 - 1. The outdoor unit electrical power shall be 208/230 volts, 3-phase, 60 hertz or 460 volts, 3-phase, 60 hertz per equipment schedule.

- 2. The outdoor unit shall be controlled by integral microprocessors.
- 3. The control circuit between the indoor units, BC Controller and the outdoor unit shall be 24VDC completed using a 2-conductor, twisted pair shielded cable to provide total integration of the system.

2.02 Branch CIRCUIT (BC) controllers FOR R2-SERIES SYSTEMS

- A. General:
 - 1. BC (Branch Circuit) Controllers (or comparable branch devices) shall include multiple branches to allow simultaneous heating and cooling by allowing either hot gas refrigerant to flow to indoor unit(s) for heating or subcooled liquid refrigerant to flow to indoor unit(s) for cooling. Refrigerant used for cooling must always be subcooled for optimal indoor unit LEV performance; alternate branch devices which do not include controlled refrigerant subcooling risk bubbles in liquid supplied to indoor unit LEVs and are not allowed.
 - 2. BC Controllers (or comparable branch devices) shall be equipped with a circuit board that interfaces to the controls system and shall perform all functions necessary for operation. The unit shall have a galvanized steel finish and be completely factory assembled, piped and wired. Each unit shall be run tested at the factory. This unit shall be mounted indoors, with access and service clearance provided for each controller. BC Controllers (or comparable branch devices) shall be suitable for use in plenums in accordance with UL1995 ed 4.
- B. BC Unit Cabinet:
 - 1. The casing shall be fabricated of galvanized steel.
 - 2. Each cabinet shall house a liquid-gas separator and multiple refrigeration control valves.
 - 3. The unit shall house two tube-in-tube heat exchangers.
- C. Refrigerant Piping (specifications in addition to those for outdoor unit):
 - 1. All refrigerant pipe connections shall be brazed.
 - 2. Future changes to indoor unit quantities or sizes served by BC Controller or comparable branch device must be possible with no piping changes except between the branch device and indoor unit(s) changing. Systems which might require future piping changes between branch device and outdoor unit—if changes to indoor unit quantities or sizes are made—are not considered equal and are not allowed.
- D. Refrigerant Valves:
 - 1. Service shut-off valves shall be field-provided/installed for each branch to allow service to any indoor unit without field interruption to overall system operation.
- E. Future Use Branch:
 - 1. Each VRF system shall include at least one (1) unused branch or branch device for future use. Future-use branches or branch devices shall be fully installed & wired in central location with capped service shutoff valve & service port.
- F. Condensate Management:
 - 1. BC Controller (or comparable branch device) must have integral resin drain pan or insulate refrigeration components with removable insulation that allows easy access for future service needs. Cabinets filled with solid foam insulation do not allow for future service and are not allowed.
- G. Electrical:
 - 1. The unit electrical power shall be 208/230 volts, 1 phase, 60 Hertz. The unit shall be capable of satisfactory operation within voltage limits of 187-228 (208V/60Hz) or 207-253 (230/60Hz).
 - 2. The BC Controller shall be controlled by integral microprocessors

3. The control circuit between the indoor units and outdoor units shall be 24VDC completed using a 2-conductor, twisted pair shielded cable to provide total integration of the system.

2.03 WALL MOUNTED INDOOR UNIT

- A. General:
 - 1. The wall-mounted indoor unit shall be factory assembled, wired and run tested. Contained within the unit shall be all factory wiring, piping, electronic modulating linear expansion device, control circuit board and fan motor. The unit shall have a self-diagnostic function, 3-minute time delay mechanism, an auto restart function, and a test run switch. Indoor unit and refrigerant pipes shall be charged with dehydrated air before shipment from the factory.

B. Unit Cabinet:

- 1. All casings, regardless of model size, shall have the same white finish
- 2. Multi directional drain and refrigerant piping offering four (4) directions for refrigerant piping and two (2) directions for draining are required.
- 3. There shall be a separate back plate which secures the unit firmly to the wall.
- C. Fan:
 - 1. The indoor fan shall be statically and dynamically balanced to run on a single motor with permanently lubricated bearings.
 - 2. A manual adjustable guide vane shall be provided with the ability to change the airflow from side to side (left to right).
 - 3. A motorized air sweep louver shall provide an automatic change in airflow by directing the air up and down to provide uniform air distribution.
- D. Filter:
 - 1. Return air shall be filtered by means of an easily removable, washable filter.
- E. Coil:
 - Basis of design indoor units include factory-installed LEV/EEV. Alternative brands which require field-installed, accessory LEV or EEV kits are permissible only with written Engineer and Architect approval for the location of kits being submitted two weeks prior to bid date. EEV kits mounted in cavities inside fire-rated interior walls shall be mounted inside three hour fire rated enclosures with access panels supplied by the manufacturer. Enclosure type and placement require prior approval.
 - 2. The indoor coil shall be of nonferrous construction with smooth plate fins on copper tubing. The tubing shall have inner grooves for high efficiency heat exchange. All tube joints shall be brazed with phos-copper or silver alloy.
 - 3. The coils shall be pressure tested at the factory.
- F. Electrical:
 - 1. The unit electrical power shall be 208/230 volts, 1-phase, 60 hertz.
 - The system shall be capable of satisfactory operation within voltage limits of 187-228 volts (208V/60Hz) or 207-253 volts (230V/60Hz)
- G. Controls:
 - 1. The unit shall include an IR receiver for wireless remote control flexibility
 - 2. Indoor unit shall compensate for the higher temperature sensed by the return air sensor compared to the temperature at level of the occupant when in HEAT mode. Disabling of compensation shall be possible for individual units to accommodate instances when compensation is not required.
 - 3. Control board shall include contacts for control of external heat source. External heat may be energized as second stage with 1.8°F 9.0°F adjustable deadband from set point.

- 4. Indoor unit shall include no less than four (4) digital inputs capable of being used for customizable control strategies.
- 5. Indoor unit shall include no less than three (3) digital outputs capable of being used for customizable control strategies.

2.04 4-WAY CEILING-RECESSED CASSETTE WITH GRILLE FOR 2X2 GRID INDOOR UNIT

- A. General:
 - 1. The indoor unit shall be a four-way cassette style indoor unit that recesses into the ceiling with a ceiling grille. The indoor unit shall be factory assembled, wired and run tested. Contained within the unit shall be all factory wiring, piping, electronic modulating linear expansion device, control circuit board and fan motor. The unit shall have a self-diagnostic function, 3-minute time delay mechanism, an auto restart function, an emergency operation function and a test run switch. Indoor unit and refrigerant pipes shall be charged with dehydrated air before shipment from the factory. The unit shall be suitable for use in plenums in accordance with UL1995 ed 4.
- B. Unit Cabinet:
 - 1. The cabinet shall be a compact 22-7/16" wide x 22-7/16" deep so it will fit within a standard 24" square suspended ceiling grid.
 - 2. The cabinet panel shall have provisions for a field installed filtered outside air intake.
 - 3. Four-way grille shall be fixed to bottom of cabinet allowing two, three or four-way blow.
- C. Fan:
 - 1. The indoor fan shall be an assembly with a turbo fan direct driven by a single motor.
 - 2. The indoor fan shall be statically and dynamically balanced to run on a motor with permanently lubricated bearings.
 - 3. The indoor fan shall be capable of three (3) speed settings, Low, Mid, and High.
 - 4. The indoor unit shall have an adjustable air outlet system offering 4-way airflow, 3-way airflow, or 2-way airflow.
 - 5. The indoor unit vanes shall have 5 fixed positions and a swing feature that shall be capable of automatically swinging the vanes up and down for uniform air distribution.
 - 6. Grille shall include an optional "3D i-see" sensor, or equal, to work in conjunction with indoor unit control sequence to prevent unnecessary cooling or heating in unoccupied areas of the zone without decreasing comfort levels. Sensor must detect occupancy (not simply motion) and location of occupants by measuring size & temperature of objects within a 39' detecting diameter (based on 8.8ft mounting height) with 1,856 or more measuring points.

D. Filter:

- 1. Return air shall be filtered by means of a long-life washable filter.
- E. Coil:
 - 1. The indoor coil shall be of nonferrous construction with smooth plate fins on copper tubing. The tubing shall have inner grooves for high efficiency heat exchange. All tube joints shall be brazed with phos-copper or silver alloy.
 - 2. The coils shall be pressure tested at the factory.
 - 3. The unit shall be provided with an integral condensate lift mechanism that will be able to raise drain water 19-3/4" inches above the condensate pan.
- F. Electrical:
 - 1. The unit electrical power shall be 208/230 volts, 1-phase, 60 hertz.
 - 2. The system shall be capable of satisfactory operation within voltage limits of 187-228 volts (208V/60Hz) or 207-253 volts (230V/60Hz).
- G. Controls:

- 1. Indoor unit shall compensate for the higher temperature sensed by the return air sensor compared to the temperature at level of the occupant when in HEAT mode. Disabling of compensation shall be possible for individual units to accommodate instances when compensation is not required.
- 2. Control board shall include contacts for control of external heat source. External heat may be energized as second stage with $1.8^{\circ}F 9.0^{\circ}F$ adjustable deadband from set point.
- 3. Indoor unit shall include no less than four (4) digital inputs capable of being used for customizable control strategies.
- 4. Indoor unit shall include no less than three (3) digital outputs capable of being used for customizable control strategies.
- 5. A factory-installed drain pan sensor shall provide protection against drain pan overflow by sensing a high condensate level in the drain pan. Should this occur, the control shuts down the indoor unit before an overflow can occur. A thermistor error code will be produced should the sensor activate indicating a fault which must be resolved before the unit re-starts.

2.05 MEDIUM STATIC CEILING-CONCEALED DUCTED INDOOR UNIT

- A. General:
 - 1. The ceiling-concealed ducted indoor unit shall be factory assembled, wired and run tested. Contained within the unit shall be all factory wiring, piping, electronic modulating linear expansion device, control circuit board and fan motor. The unit shall have a self-diagnostic function, 3-minute time delay mechanism, and an auto restart function. Indoor unit and refrigerant pipes shall be charged with dehydrated air before shipment from the factory. The unit shall be suitable for use in plenums in accordance with UL1995 ed 4.
- B. Unit Cabinet:
 - 1. The unit shall be ceiling-concealed, ducted—with a 2-position, field adjustable return and a fixed horizontal discharge supply.
 - 2. The cabinet panel shall have provisions for a field installed filtered outside air intake.
- C. Fan:
 - 1. Indoor unit shall feature multiple external static pressure settings ranging from 0.14 to 0.60 in. WG.
 - 2. The indoor unit fan shall be an assembly with statically and dynamically balanced Sirocco fan(s) direct driven by a single motor with permanently lubricated bearings.
 - 3. The indoor fan shall consist of three (3) speeds, High, Mid, and Low plus the Auto-Fan function
- D. Filter:
 - 1. Return filter box (rear or bottom placement) with high-efficiency filter as noted on equipment schedule.
- E. Coil:
 - 1. The indoor coil shall be of nonferrous construction with smooth plate fins on copper tubing. The tubing shall have inner grooves for high efficiency heat exchange. All tube joints shall be brazed with phos-copper or silver alloy.
 - 2. The coils shall be pressure tested at the factory.
 - 3. Coil shall be provided with a sloped drain pan. Units without sloped drain pans which must be installed cockeyed to ensure proper drainage are not allowed.
 - 4. The unit shall be provided with an integral condensate lift mechanism able to raise drain water 27 inches above the condensate pan.
- F. Electrical:
 - 1. The unit electrical power shall be 208/230 volts, 1-phase, 60 hertz.

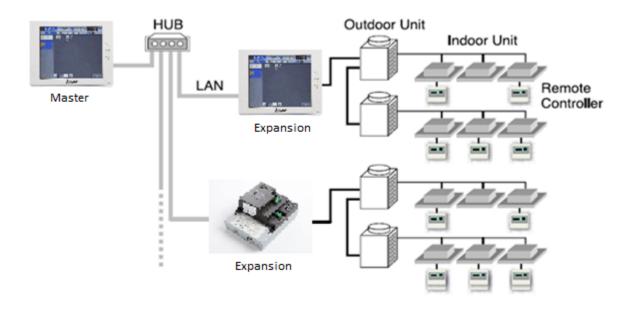
- 2. The system shall be capable of satisfactory operation within voltage limits of 187-228 volts (208V/60Hz) or 207-253 volts (230V/60Hz).
- G. Controls:
 - 1. Indoor unit shall compensate for the higher temperature sensed by the return air sensor compared to the temperature at level of the occupant when in HEAT mode. Disabling of compensation shall be possible for individual units to accommodate instances when compensation is not required.
 - 2. Control board shall include contacts for control of external heat source. External heat may be energized as second stage with $1.8^{\circ}F 9.0^{\circ}F$ adjustable deadband from set point.
 - 3. Indoor unit shall include no less than four (4) digital inputs capable of being used for customizable control strategies.
 - 4. Indoor unit shall include no less than three (3) digital outputs capable of being used for customizable control strategies.

2.06 VERTICAL/HORIZONTAL DUCTED (MULTI-POSITION AIR HANDLER) INDOOR UNIT

- A. General:
 - 1. The multi-position indoor unit shall be factory assembled, wired and run tested. Contained within the unit shall be all factory wiring, piping, electronic modulating linear expansion device, control circuit board and fan motor. The unit shall have a self-diagnostic function, 3-minute time delay mechanism, and an auto restart function. Indoor unit and refrigerant pipes shall be charged with dehydrated air before shipment from the factory. The unit shall be suitable for use in air handling spaces in accordance with Section 18.2 of UL 1995 4th Edition, be tested in accordance with ANSI/ASHRAE 193 and have less than 2% air leakage at maximum airflow setting.
- B. Unit Cabinet:
 - 1. The cabinet shall include a fixed bottom return, a fixed vertical discharge supply and be prepainted, pre-insulated, 22 gauge galvanized steel.
- C. Fan:
 - 1. The indoor unit fan shall be an assembly with a single, statically and dynamically balanced direct drive fan with a high efficiency DC motor with permanently lubricated bearings.
 - 2. The fan shall have 3-speeds with the capability to operate between 0.3-0.8 In.WG selectable.
- D. Filter:
 - 1. The unit shall have a 1" filter rack with a reusable filter.
- E. Coil:
 - 1. The indoor coil shall be of nonferrous construction with smooth plate fins on copper tubing. The tubing shall have inner grooves for high efficiency heat exchange. All tube joints shall be brazed with phos-copper or silver alloy.
 - 2. The coils shall be pressure tested at the factory.
- F. Electrical:
 - 1. The unit electrical power shall be 208/230 volts, 1-phase, 60 hertz.
 - 2. The system shall be capable of satisfactory operation within voltage limits of 187-228 volts (208V/60Hz) or 207-253 volts (230V/60Hz).
- G. Controls:
 - 1. Control board shall include contacts for control of no less than two stages of external heat. The first stage of external heat may be energized when the space temperature is

2.7°F from set point for between 10-25 minutes (user adjustable). The second stage of external heat may be energized when the first stage has been active for no less than 5 minutes and the space temperature has not risen by more than 0.9°F.

- 2. Indoor unit shall include no less than four (4) digital inputs capable of being used for customizable control strategies.
- 3. Indoor unit shall include no less than three (3) digital outputs capable of being used for customizable control strategies.


2.07 CONTROLS OVERVIEW

A. General:

- 1. The control system shall consist of a low voltage communication network and a web-based interface. The controls system shall gather data and generate web pages accessible through a conventional web browser on each PC connected to the network. Operators shall be able to perform all normal operator functions through the web browser interface.
- 2. Furnish energy conservation features such as optimal start, request-based logic, and demand level adjustment of overall system capacity as specified in the sequence.
- 3. System shall be capable of email generation for remote alarm annunciation.

B. Wiring:

- 1. Control wiring shall be installed in a daisy chain configuration from indoor unit to indoor unit, to the BC controller (main and subs, if applicable) and to the outdoor unit. Control wiring to remote controllers shall be run from the indoor unit terminal block to the controller associated with that unit.
- 2. Control wiring for centralized controllers shall be installed in a daisy chain configuration from outdoor unit to outdoor unit, to the system controllers (centralized controllers and/or integrated web based interface), to the power supply.
- C. Wiring Type:
 - 1. Wiring shall be 2-conductor (16 AWG), twisted shielded pair, stranded wire, as defined by the Design Tool AutoCAD output.
 - 2. Network wiring shall be CAT-5e with RJ-45 connection.
- D. CITY MULTI Controls Network:
 - The CITY MULTI Controls Network (CMCN) consists of remote controllers, schedule timers, system controllers, centralized controllers, and/or integrated web-based interface communicating over a high-speed communication bus. The CITY MULTI Controls Network shall support operation monitoring, scheduling, error email distribution, personal browsers, tenant billing, online maintenance support, and integration with Building Management Systems (BMS) using either LonWorks® or BACnet® interfaces.
 - 2. The below figure illustrates a sample CMCN System Configuration.

- 3.
- E. CMCN: Remote Controllers Backlit Simple MA Remote Controller ALL AREAS
 - 1. The Backlit Simple MA Remote Controller (PAC-YT53CRAU) shall be capable of controlling up to 16 indoor units (defined as 1 group). The Backlit Simple MA Remote Controller shall be compact in size, approximately 3" x 5" and have limited user functionality. The Backlit Simple MA supports temperature display selection of Fahrenheit or Celsius. The Backlit Simple MA Remote Controller shall allow the user to change on/off, mode (cool, heat, auto (R2/WR2-Series only), dry, setback (R2/WR2-Series only) and fan), temperature setting, and fan speed setting and airflow direction. The Backlit Simple MA Remote Controller shall be capable of night setback control with upper and lower set temperature settings. The room temperature shall be sensed at either the Backlit Simple MA Remote Controller or the Indoor Unit dependent on the indoor unit dipswitch setting. The Backlit Simple MA Remote Controller or the Indoor Unit dependent on the indoor unit dipswitch setting. The Backlit Simple MA Remote Controller or the Indoor Unit dependent on the indoor unit dipswitch setting. The Backlit Simple MA Remote Controller or the Indoor Unit dependent on the indoor unit dipswitch setting. The Backlit Simple MA Remote Controller or the Indoor Unit dependent on the indoor unit dipswitch setting. The Backlit Simple MA Remote Controller or the Indoor Unit dependent on the indoor unit dipswitch setting. The Backlit Simple MA Remote Controller or the Indoor Unit dependent on the indoor unit dipswitch setting. The Backlit Simple MA Remote Controller or the Indoor Unit dependent on the indoor unit dipswitch setting. The Backlit Simple MA Remote Controller or the Indoor Unit dependent on the indoor unit dipswitch setting. The Backlit Simple MA Remote Controller or the Indoor Unit dependent on the indoor unit dipswitch setting. The Backlit Simple MA Remote Controller or the Indoor Unit dependent on the indoor unit dipswitch setting.
 - 2. The Backlit Simple MA Remote Controller shall only be used in same group with Wireless MA Remote Controllers (PAR-FL32MA-E / PAR-FA32MA-E) or with other Backlit Simple MA Remote Controllers (PAC-YT53CRAU), with up to two remote controllers per group.
 - 3. The Backlit Simple MA Remote Controller shall require no addressing. The Backlit Simple MA Remote Controller shall connect using two-wire, stranded, non-polar control wire to TB15 connection terminal on the indoor unit. The Simple MA Remote Controller shall require cross-over wiring for grouping across indoor units.
- F. Input/Output (I/O) Boards.
 - 1. The DIDO board shall be capable of providing On/Off control for non-Mitsubishi Electric equipment. Each DIDO board shall have two digital inputs and two digital outputs. Each digital output shall be capable of supporting an independent schedules. Status indication of the On/Off state of the non-Mitsubishi Electric equipment shall be either via the On/Off status of the digital output or by receipt of a digital input to the DIDO board.
 - 2. The DIDO board shall be capable of receiving a digital input for interlock settings with the CITY MULTI indoor units or digital outputs on the DIDO board. Based on the digital input status the DIDO board shall be capable of setting the following parameter on the indoor unit On/Off, Mode, and Set Temperature to predefined settings. The DIDO board shall also be capable of interlocking the On/Off state of a digital output on the DIDO board based onan onboard channel digital input status or a free contact input status from system indoor units.

2.08 CENTRALIZED CONTROLLER (WEB-ENABLED)

- A. Master Centralized Controller:
 - The Master Centralized Controller shall be capable of controlling a maximum of two hundred 1 (200) indoor units across multiple CITY MULTI outdoor units with the use of three expansion controllers. The Master Centralized Controller shall be approximately 11-5/32" x 7-55/64" x 2-17/32" in size and shall be powered with an integrated 100-240 VAC power supply. The Master Centralized Controller shall support system configuration, daily/weekly scheduling, monitoring of operation status, night setback settings, free contact interlock configuration and malfunction monitoring. When being used alone without the expansion controllers, the Master Centralized Controller shall have five basic operation controls which can be applied to an individual indoor unit, a collection of indoor units (up to 50 indoor units), or all indoor units (collective batch operation). This basic set of operation controls for the Master Centralized Controller shall include on/off, operation mode selection (cool, heat, auto (R2/WR2-Series only), dry, setback (R2/WR2-Series only) and fan), temperature setting, fan speed setting, and airflow direction setting. Since the master provides centralized control it shall be able to enable or disable operation of local remote controllers. In terms of scheduling, the Master Centralized Controller shall allow the user to define both daily and weekly schedules (up to 24 scheduled events per day) with operations consisting of ON/OFF, mode selection, temperature setting, air flow (vane) direction, fan speed, and permit/prohibit of remote controllers. See Master Centralized Controller Table Below.

Master Centralized Controller					
Item	Description	Operation	Display		
ON/OFF	Run and stop operation.	Each Block, Group, or Collective	Each Group or Collective		
Operation Mode	Switches between Cool/Dry/Auto/Fan/Heat. (Group of Lossnay unit: automatic ventilation/vent-heat/interchange/normal ventilation) Operation modes vary depending on the air conditioner unit. Auto mode is available for the R2/WR2- Series only.	Each Block, Group, or Collective	Each Group		
Temperature Setting	Sets the temperature from 57°F – 87°F depending on operation mode and indoor unit.	Each Block, Group, or Collective	Each Group		
Fan Speed Setting	Available fan speeds depend on the indoor unit.	Each Block, Group, or Collective	Each Group		
Air Flow Direction Setting	Air flow direction settings vary depending on the indoor unit model. *1. Louver cannot be set.	*1 Each Block, Group, or Collective	Each Group		
Schedule Operation	Annual/weekly/today schedule can be set for each group of air conditioning units. Optimized start setting is also available. *1. The system follows either the current day, annual schedule, or weekly, which are in the descending order of overriding priority. Twenty-four events can scheduled per day,	*2 Each Block, Group, or Collective	Each Group		

		1	1
	including ON/OFF, Mode, Temperature Setting, Air Direction, Fan Speed and Operation Prohibition. Five types of weekly schedule (seasonal) can be set. Settable items depend on the functions		
	that a given air conditioning unit supports.		
Optimized Start	Unit starts 5 - 60 minutes before the scheduled time based on the operation data history in order to reach the scheduled temperature at the scheduled time.	Each Block, Group, or Collective	Each Block, Group, or Collective
Night Setback Setting	The function helps keep the indoor temperature in the temperature range while the units are stopped and during the time this function is effective.	Each Group	Each Group
Permit/Prohibit Local Operation	Individually prohibit operation of each local remote control function (Start/Stop, Change operation mode, Set temperature, Reset filter). Centrally Controlled is displayed on the remote controller for prohibited functions.	Each Block, Group, or Collective	*3 Each Group
Room Temp	Displays the room temperature of the group. Space temperature displayed on the indoor unit icon on the touch screen interface.	N/A	Each Group
Error	When an error is currently occurring on an air conditioner unit, the afflicted unit and the error code are displayed *4. When an error occurs, the LED flashes. The operation monitor screen shows the abnormal unit by flashing it. The error monitor screen shows the abnormal unit address, error code and source of detection. The error log monitor screen shows the time and date, the abnormal unit address, error code and source of detection	N/A	Each Unit or Collective
Outdoor Unit Status	Compressor capacity percentage and system pressure (high and low) pressure (excludes S-Series)	Each ODU	Each ODU
Connected Unit Info	MNET addresses of all connected systems	Each IDU, ODU, and BC	Each IDU, ODU, and BC
Ventilation Equipment	This interlocked system settings can be performed by the master system controller. When setting the interlocked system, use the ventilation switch the free plan LOSSNAY settings between "Hi", "Low" and "Stop". When setting a group of only free plan LOSSNAY units, you can switch between "Normal ventilation", "Interchange ventilation" and "Automatic ventilation".	Each Group	Each Group
Multiple Language	Other than English, the following languages can be selected: Spanish, French, Japanese, Dutch, Italian, Russian, Chinese, and Portuguese.	N/A	Collective
HVAC Replacement	23 8129 - 14	Va	ariable Refrigerant Flow

External I/O	By using accessory cables you can set and monitor the following. Input By level: "Batch start/stop", "Batch emergency stop" By pulse: "batch start/stop", "Enable/disable remote controller" Output: "start/stop", "error/Normal" *5 Requires the external I/O cables (PAC- YG10HA-E) sold separately.	*5 Collective	*5 Collective
--------------	---	---------------	---------------

- 2. All Master Centralized Controllers shall be equipped with two RJ-45 Ethernet ports to support interconnection with a network PC via a closed/direct Local Area Network (LAN) or to a network switch for IP communication to up to three expansion controllers for display of up to two hundred (200) indoor units on the main master centralized controller interface.
- 3. The Master Centralized Controller shall be capable of performing initial settings via the highresolution, backlit, color touch panel on the controller or via a PC browser using the initial settings.
- B. Expansion Controller:
 - 1. The Expansion Controller shall serve as a standalone centralized controller or as an expansion module to the Master Centralized Controller for the purpose of adding up to 50 indoor units to either the main touch screen interface of the master centralized controller. Up to three (3) expansion controllers can be connected to the master via a local IP network (and their IP addresses assigned on the master) to the master to allow for up to two hundred (200) indoor units to be monitored and controlled from the master interface.
 - 2. The expansion controllers have all of the same capabilities to monitor and control their associated indoor units as the features specified above. Even when connected to the master and configured to display their units on the main controller, the individual indoor units connected to the expansion can still be monitored and controlled from the interface of the expansion. The last command entered will take precedence, whether at the wall controller, the expansion or the master Centralized Controller.

PART 3 EXECUTION

3.01 INSTALLATION

- A. Install units level and plumb.
- B. Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.
- C. Install and connect precharged refrigerant tubing to component's quick-connect fittings. Install tubing to allow access to unit.

3.02 CONNECTIONS

A. Coordinate piping installations and specialty arrangements with schematics on Drawings and with requirements specified in piping systems. If Drawings are explicit enough, these requirements may be reduced or omitted.

- B. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- C. Where piping is installed adjacent to unit, allow space for service and maintenance of unit.
- D. Duct Connections: Duct installation requirements are specified in Section 23 3113 "Metal Ducts." Drawings indicate the general arrangement of ducts. Connect supply and return ducts to airconditioning units with flexible duct connectors. Flexible duct connectors are specified in Section 23 3300 "Air Duct Accessories."

3.03 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- C. Tests and Inspections:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Remove and replace malfunctioning units and retest as specified above.
- E. Prepare test and inspection reports.

3.04 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.
 1. Complete installation and startup checks according to manufacturer's written instructions.

3.05 DEMONSTRATION

- A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain units.
- B. The VRF manufacturer shall provide the owner's representative a minimum 4-hour VRF Operation and Maintenance training class covering systems installed under this scope of work.
- C. Training program is to be provided at the time of owner occupancy. Owner shall provide a suitable location, onsite, to conduct the VRF Operation and Maintenance class.
- D. Training material shall be provided to participants in electronic format.

END OF SECTION